The First Synthesis of Periodic and Alternating Glycopolymers by RAFT Polymerization: A Novel Synthetic Pathway for Glycosaminoglycan Mimics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Methods
2.3. Synthesis of MalVE
2.4. Synthesis of LacVE
2.5. Synthesis of MalMI
2.6. Copolymerization of MalVE and EtMI under Conventional Radical Polymerization Conditions
2.7. Copolymerization of MalVE and EtMI under RAFT Polymerization Conditions
2.8. Copolymerization of LacVE and EtMI under RAFT Polymerization Conditions
2.9. Copolymerization of LacVE and MalMI under RAFT Polymerization Conditions
2.10. Lectin Binding Assay
2.11. Cytotoxicity Assessment
3. Results and Discussion
3.1. Comparison of Copolymerization of MalVE and EtMI with and without RAFT Agent
3.2. RAFT Copolymerization of MalVE and EtMI
3.3. RAFT Copolymerization of LacVE and EtMI
3.4. RAFT Copolymerization of LacVE and MalMI
3.5. Lectin Binding Assay
3.6. In Vitro Cytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Jackson, R.L.; Busch, S.J.; Cardin, A.D. Glycosaminoglycans: Molecular Properties, Protein Interactions, and Role in Physiological Processes. Physiol. Rev. 1991, 71, 481–539. [Google Scholar] [CrossRef] [PubMed]
- Hileman, R.E.; Fromm, J.R.; Weiler, J.M.; Linhardt, R.J. Glycosaminoglycan—Protein interactions: Definition of consensus sites in glycosaminoglycan binding proteins. BioEssays 1998, 20, 156–167. [Google Scholar] [CrossRef]
- Yabe, T.; Maeda, N. Histochemical Analysis of Heparan Sulfate 3-O-Sulfotransferase Expression in Mouse Brain. In Glycosaminoglycans: Methods in Molecular Biology; Balagurunathan, K., Nakato, H., Desai, U., Eds.; Humana Press: New York, NY, USA, 2015; Volume 1229, pp. 377–387. [Google Scholar]
- Liu, Q.; Chen, G.; Chen, H. Chemical synthesis of glycosaminoglycan-mimetic polymers. Polym. Chem. 2018, in press. [Google Scholar] [CrossRef]
- Miura, Y.; Mizuno, H. Interaction Analyses of Amyloid β Peptide (1–40) with Glycosaminoglycan Model Polymers. Bull. Chem. Soc. Jpn. 2010, 83, 1004–1009. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.I.; Sheng, G.J.; Chang, S.-K.; Hsieh-Wilson, L.C. Tailored Glycopolymers as Anticoagulant Heparin Mimetics. Angew. Chem. Int. Ed. 2013, 52, 11796–11799. [Google Scholar] [CrossRef] [Green Version]
- Sheng, G.J.; Oh, Y.I.; Chang, S.-K.; Hsieh-Wilson, L.C. Tunable Heparan Sulfate Mimetics for Modulating Chemokine Activity. J. Am. Chem. Soc. 2013, 135, 10898–10901. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Lyu, Z.; Chen, G.; Wang, H.; Yuan, Y.; Ding, K.; Yu, Q.; Yuan, L.; Chen, H. A new avenue to the synthesis of GAG-mimicking polymers highly promoting neural differentiation of embryonic stem cells. Chem. Commun. 2015, 51, 15434–15437. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-L.; Grande, D.; Baskaran, S.; Hanson, S.R.; Chaikof, E.L. Glycosaminoglycan Mimetic Biomaterials. 4. Synthesis of Sulfated Lactose-Based Glycopolymers That Exhibit Anticoagulant Activity. Biomacromolecules 2002, 3, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, S.; Grande, D.; Sun, X.-L.; Yayon, A.; Chaikof, E.L. Glycosaminoglycan-Mimetic Biomaterials. 3. Glycopolymers Prepared from Alkene-Derivatized Mono- and Disaccharide-Based Glycomonomers. Bioconjugate Chem. 2002, 13, 1309–1313. [Google Scholar] [CrossRef]
- Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45, 4015–4039. [Google Scholar] [CrossRef]
- Tsarevsky, N.V.; Matyjaszewski, K. “Green” Atom Transfer Radical Polymerization: From Process Design to Preparation of Well-Defined Environmentally Friendly Polymeric Materials. Chem. Rev. 2007, 107, 2270–2299. [Google Scholar] [CrossRef] [PubMed]
- Moad, G.; Rizzardo, E.; Thang, S.H. Living Radical Polymerization by the RAFT Process—A First Update. Aust. J. Chem. 2006, 59, 669–692. [Google Scholar] [CrossRef] [Green Version]
- Moad, G.; Rizzardo, E.; Thang, S.H. Living Radical Polymerization by the RAFT Process—A Second Update. Aust. J. Chem. 2009, 62, 1402–1472. [Google Scholar] [CrossRef]
- Moad, G.; Rizzardo, E.; Thang, S.H. Living Radical Polymerization by the RAFT Process—A Third Update. Aust. J. Chem. 2012, 65, 985–1076. [Google Scholar] [CrossRef]
- Sun, H.; Kabb, C.P.; Dai, Y.; Hill, M.R.; Ghiviriga, I.; Bapat, A.P.; Sumerlin, B.S. Macromolecular metamorphosis via stimulus-induced transformations of polymer architecture. Nat. Chem. 2017, 9, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Kabb, C.P.; Sims, M.B.; Sumerlin, B.S. Architecture-transformable polymers: Reshaping the future of stimuli-responsive polymers. Prog. Polym. Sci. 2018, in press. [Google Scholar] [CrossRef]
- Zhang, Q.; Collins, J.; Anastasaki, A.; Wallis, R.; Mitchell, D.A.; Becer, C.R.; Haddleton, D.M. Sequence-Controlled Multi-Block Glycopolymers to Inhibit DC-SIGN-gp120 Binding. Angew. Chem. Int. Ed. 2013, 52, 4435–4439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, A.; Kubota, T.; Otsu, T. Radical Polymerization of N-(alkyl-substituted phenyl)maleimides: Synthesis of Thermally Stable Polymers Soluble in Nonpolar Solvents. Macromolecules 1990, 23, 4508–4513. [Google Scholar] [CrossRef]
- Doi, T.; Akimoto, A.; Matsumoto, A.; Oki, Y.; Otsu, T. Alternating Copolymerization of N-(alkyl-substituted phenyl)maleimides with Isobutene and Thermal Properties of the Resulting Copolymers. J. Polym. Sci. A Polym. Chem. 1996, 34, 2499–2505. [Google Scholar] [CrossRef]
- Butler, G.B. Recent Developments in Polymerization by an Alternating Intra-Intermolecular Mechanism. J. Polym. Sci. A Polym. Chem. 1996, 34, 913–923. [Google Scholar] [CrossRef]
- Matsumoto, A.; Hisano, M.; Yamamoto, D.; Yamamoto, H.; Okamura, H. Synthesis of Sequence-Controlled Maleimide Copolymers and Application to the Design of Thermoresistant and Transparent Polymer Materials. Kobunshi Ronbunshu 2015, 72, 243–260. [Google Scholar] [CrossRef]
- Ojika, M.; Satoh, K.; Kamigaito, M. BAB-random-C Monomer Sequence via Radical Terpolymerization of Limonene (A), Maleimide (B), and Methacrylate (C): Terpene Polymers with Randomly Distributed Periodic Sequences. Angew. Chem. Int. Ed. 2017, 56, 1789–1793. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K.; Matsuda, M.; Nagai, K.; Kamigaito, M. AAB-Sequence Living Radical Chain Copolymerization of Naturally Occurring Limonene with Maleimide: An End-to-End Sequence-Regulated Copolymer. J. Am. Chem. Soc. 2010, 132, 10003–10005. [Google Scholar] [CrossRef] [PubMed]
- Nishimori, K.; Ouchi, M.; Sawamoto, M. Sequence Analysis for Alternating Copolymers by MALDI-TOF-MS: Importance of Initiator Selectivity for Comonomer Pair. Macromol. Rapid Commun. 2016, 37, 1414–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimori, K.; Sawamoto, M.; Ouchi, M. Design of Maleimide Monomer for Higher Level of Alternating Sequence in Radical Copolymerization with Styrene. J. Polym. Sci. A Polym. Chem. 2018, in press. [Google Scholar] [CrossRef]
- Tanaka, T.; Nagai, H.; Noguchi, M.; Kobayashi, A.; Shoda, S. One-step conversion of unprotected sugars to β-glycosyl azides using 2-chloroimidazolinium salt in aqueous solution. Chem. Commun. 2009, 3378–3379. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Ishitani, H.; Miura, Y.; Oishi, K.; Takahashi, T.; Suzuki, T.; Shoda, S.; Kimura, Y. Protecting-Group-Free Synthesis of Glycopolymers Bearing Sialyloligosaccharide and Their High Binding with the Influenza Virus. ACS Macro Lett. 2014, 3, 1074–1078. [Google Scholar] [CrossRef]
- Matsuda, M.; Satoh, K.; Kamigaito, M. Periodically Functionalized and Grafted Copolymers via 1:2-Sequence-Regulated Radical Copolymerization of Naturally Occurring Functional Limonene and Maleimide Derivatives. Macromolecules 2013, 46, 5473–5482. [Google Scholar] [CrossRef]
- Matsuda, M.; Satoh, K.; Kamigaito, M. 1:2-Sequence-Regulated Radical Copolymerization of Naturally Occurring Terpenes with Maleimide Derivatives in Fluorinated Alcohol. J. Polym. Sci. A Polym. Chem. 2013, 51, 1774–1785. [Google Scholar] [CrossRef]
- Stolz, R.M.; Northrop, B.H. Experimental and Theoretical Studies of Selective Thiol–Ene and Thiol–Yne Click Reactions Involving N-Substituted Maleimides. J. Org. Chem. 2013, 78, 8105–8116. [Google Scholar] [CrossRef]
- Hales, M.; Barner-Kowollik, C.; Davis, T.P.; Stenzel, M.H. Shell-Cross-Linked Vesicles Synthesized from Block Copolymers of Poly(d,l-lactide) and Poly(N-isopropyl acrylamide) as Thermoresponsive Nanocontainers. Langmuir 2004, 20, 10809–10817. [Google Scholar] [CrossRef]
- Tan, N.M.; Mori, R.; Tanaka, T.; Motoyanagi, J.; Minoda, M. Living cationic polymerization of a vinyl ether with an unprotected pendant alkynyl group and their use for the protecting group-free synthesis of macromonomer-type glycopolymers via CuAAC with maltosyl azides. J. Polym. Sci. A Polym. Chem. 2019, in press. [Google Scholar] [CrossRef]
- Furuike, T.; Nishi, N.; Tokura, S.; Nishimura, S.-I. Synthetic Glycoconjugates. 6. Preparation and Biochemical Evaluation of Novel Cluster-Type Glycopolymers Containing Gal β(1→4)GlcNAc (N-Acetyllactosamine) Residue. Macromolecules 1995, 28, 7241–7247. [Google Scholar] [CrossRef]
- Miura, Y.; Ikeda, T.; Kobayashi, K. Chemoenzymatically Synthesized Glycoconjugate Polymers. Biomacromolecues 2003, 4, 410–415. [Google Scholar] [CrossRef] [PubMed]
Reaction Time (min) | Conversion (%) 2 | Mn SEC3 | Mn NMR2 | Mw/Mn3 | Composition Ratio (%) 1 | ||
---|---|---|---|---|---|---|---|
MalVE | EtMI | MalVE | EtMI | ||||
15 | 24 | 39 | 2100 | 9600 | 1.34 | 41 | 59 |
30 | 40 | 66 | 3100 | 14,000 | 1.46 | 42 | 58 |
60 | 65 | 95 | 4200 | 24,000 | 1.49 | 40 | 60 |
120 | 73 | 100 | 4400 | 27,000 | 1.53 | 42 | 58 |
Reaction Time (min) | Conversion (%) 2 | Mn SEC3 | Mn NMR2 | Mw/Mn3 | Composition Ratio (%) 1 | ||
---|---|---|---|---|---|---|---|
LacVE | EtMI | LacVE | EtMI | ||||
10 | 28 | 37 | 3600 | 10,000 | 1.46 | 43 | 57 |
20 | 49 | 66 | 4600 | 22,000 | 1.49 | 42 | 58 |
40 | 75 | 92 | 6200 | 29,000 | 1.53 | 43 | 57 |
80 | 87 | 100 | 6600 | 28,000 | 1.51 | 43 | 57 |
Reaction Time (min) | Conversion (%) 2 | Mn3 | Mw/Mn3 | Composition Ratio (%) 2 | ||
---|---|---|---|---|---|---|
LacVE | MalMI | LacVE | MalMI | |||
20 | 3 | 22 | 4700 | 1.40 | 36 | 64 |
30 | 18 | 34 | 5000 | 1.48 | 35 | 65 |
60 | 30 | 49 | 5800 | 1.52 | 36 | 64 |
120 | 61 | 74 | 5900 | 1.50 | 36 | 64 |
240 | 67 | 81 | 6000 | 1.47 | 36 | 64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minoda, M.; Otsubo, T.; Yamamoto, Y.; Zhao, J.; Honda, Y.; Tanaka, T.; Motoyanagi, J. The First Synthesis of Periodic and Alternating Glycopolymers by RAFT Polymerization: A Novel Synthetic Pathway for Glycosaminoglycan Mimics. Polymers 2019, 11, 70. https://doi.org/10.3390/polym11010070
Minoda M, Otsubo T, Yamamoto Y, Zhao J, Honda Y, Tanaka T, Motoyanagi J. The First Synthesis of Periodic and Alternating Glycopolymers by RAFT Polymerization: A Novel Synthetic Pathway for Glycosaminoglycan Mimics. Polymers. 2019; 11(1):70. https://doi.org/10.3390/polym11010070
Chicago/Turabian StyleMinoda, Masahiko, Tomomi Otsubo, Yohei Yamamoto, Jianxin Zhao, Yoshitomo Honda, Tomonari Tanaka, and Jin Motoyanagi. 2019. "The First Synthesis of Periodic and Alternating Glycopolymers by RAFT Polymerization: A Novel Synthetic Pathway for Glycosaminoglycan Mimics" Polymers 11, no. 1: 70. https://doi.org/10.3390/polym11010070
APA StyleMinoda, M., Otsubo, T., Yamamoto, Y., Zhao, J., Honda, Y., Tanaka, T., & Motoyanagi, J. (2019). The First Synthesis of Periodic and Alternating Glycopolymers by RAFT Polymerization: A Novel Synthetic Pathway for Glycosaminoglycan Mimics. Polymers, 11(1), 70. https://doi.org/10.3390/polym11010070