Effect of an Atmospheric Pressure Plasma Jet on the Structure and Physicochemical Properties of Waxy and Normal Maize Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Exposure of Starch Suspension to APPJ
2.3. pH of Starch Suspension
2.4. Water Binding Capacity (WBC) and Swelling Volume (SV)
2.5. Scanning Electron Microscopy (SEM)
2.6. X-Ray Diffraction (XRD)
2.7. Fourier-Transform Infrared Spectroscopy (FT−IR)
2.8. Raman Spectroscopy
2.9. Differential Scanning Calorimetry (DSC)
2.10. Statistical Analysis
3. Results and Discussion
3.1. pH, Water Binding Capacity, and Swelling Volume
3.2. Granular Morphology
3.3. Crystalline Structure
3.4. Molecular Structure as Determined by FTIR
3.5. Molecular Structure Determined by Raman
3.6. Gelatinization Properties
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Vanier, N.L.; Halal, S.L.M.E.; Dias, A.R.G.; Zavareze, E.D.R. Molecular structure, functionality and applications of oxidized starches: A review. Food Chem. 2017, 221, 1546–1559. [Google Scholar] [CrossRef]
- Bemiller, J.N. Starch modification: Challenges and prospects. Starch/Stärke 1997, 49, 127–131. [Google Scholar] [CrossRef]
- Madhumitha, G.; Fowsiya, J.; Roopan, S.M.; Thakur, V.K. Recent advances in starch-clay nanocomposites. Int. J. Polym. Anal. Charact. 2018, 23, 331–345. [Google Scholar] [CrossRef]
- Wróblewska-Krepsztul, J.; Rydzkowski, T.; Borowski, G.; Szczypiński, M.; Klepka, T.; Thakur, V.K. Recent progress in biodegradable polymers and nanocomposites-based packaging materials for sustainable environment. Int. J. Polym. Anal. Charact. 2018, 23, 383–395. [Google Scholar]
- Wang, S.J.; Copeland, L. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review. Food Funct. 2013, 4, 1564–1580. [Google Scholar] [CrossRef]
- Zhang, B.; Xiong, S.; Li, X.; Li, L.; Xie, F.; Chen, L. Effect of oxygen glow plasma on supramolecular and molecular structures of starch and related mechanism. Food Hydrocoll. 2014, 37, 69–76. [Google Scholar] [CrossRef]
- Tharanathan, R.N. Starch-value addition by modification. Crit. Rev. Food Sci. 2005, 45, 371–384. [Google Scholar] [CrossRef]
- Kaur, B.; Ariffin, F.; Bhat, R.; Karim, A.A. Progress in starch modification in the last decade. Food Hydrocoll. 2012, 26, 398–404. [Google Scholar] [CrossRef]
- Concha, B.B.S.D.L.; Agama-Acevedo, E.; Nuñez-Santiago, M.C.; Bello-Perez, L.A.; Garcia, H.S.; Alvarez-Ramirez, J. Acid hydrolysis of waxy starches with different granule size for nanocrystal production. J. Cereal Sci. 2018, 79, 193–200. [Google Scholar] [CrossRef]
- Hao, Y.; Chen, Y.; Li, Q.; Gao, Q. Preparation of starch nanocrystals through enzymatic pretreatment from waxy potato starch. Carbohydr. Polym. 2018, 184, 171–177. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Wang, S.; Wang, S. Annealing improves paste viscosity and stability of starch. Food Hydrocoll. 2017, 62, 203–211. [Google Scholar] [CrossRef]
- Zhu, J.; Li, L.; Chen, L.; Li, X. Study on supramolecular structural changes of ultrasonic treated potato starch granules. Food Hydrocoll. 2012, 29, 116–122. [Google Scholar] [CrossRef]
- Shi, M.; Lianga, X.; Yan, Y.; Pan, H.; Liu, Y. Influence of ethanol-water solvent and ultra-high pressure on the stability of amylose-n-octanol complex. Food Hydrocoll. 2018, 74, 315–323. [Google Scholar] [CrossRef]
- Bahrami, N.; Bayliss, D.; Chope, G.; Penson, S.; Perehinec, T.; Fisk, I.D. Cold plasma: A new technology to modify wheat flour functionality. Food Chem. 2016, 202, 247–253. [Google Scholar] [CrossRef]
- Thirumdas, R.; Sarangapani, C.; Annapure, U.S. Cold plasma: A novel non-thermal technology for food processing. Food Biophys. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- Thirumdas, R.; Kadam, D.; Annapure, U.S. Cold plasma: An alternative technology for the starch modification. Food Biophys. 2017, 12, 129–139. [Google Scholar] [CrossRef]
- Zhu, F. Plasma modification of starch. Food Chem. 2017, 232, 476–486. [Google Scholar] [CrossRef]
- Misra, N.N.; Tiwari, B.K.; Raghavarao, K.S.M.S.; Cullen, P.J. Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 2011, 3, 159–170. [Google Scholar] [CrossRef]
- Misra, N.N.; Pankaj, S.K.; Segat, A.; Ishikawa, K. Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci. Technol. 2016, 55, 39–47. [Google Scholar] [CrossRef]
- Bie, P.; Pu, H.; Zhang, B.; Su, J.; Chen, L.; Li, X. Structural characteristics and rheological properties of plasma-treated starch. Innov. Food Sci. Emerg. 2016, 34, 196–204. [Google Scholar] [CrossRef]
- Chen, H.H.; Chen, Y.K.; Chang, H.C. Evaluation of physicochemical properties of plasma treated brown rice. Food Chem. 2012, 135, 74–79. [Google Scholar] [CrossRef]
- Bastos, D.C.; Simao, R.A. Acetylene coating on cornstarch plastics produced by cold plasma technology. Starch/Stärke 2014, 66, 267–273. [Google Scholar] [CrossRef]
- Lii, C.Y.; Liao, C.D.; Stobinski, L.; Tomasik, P. Effects of hydrogen, oxygen, and ammonia low-pressure glow plasma on granular starches. Carbohydr. Polym. 2002, 49, 449–456. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, L.; Li, X.; Li, L.; Zhang, H. Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma: A structure-functionality relationship. Food Hydrocoll. 2015, 50, 228–236. [Google Scholar] [CrossRef]
- Banura, S.; Thirumdas, R.; Kaur, A.; Deshmukh, R.R.; Annapure, U.S. Modification of starch using low pressure radio frequency air plasma. LWT Food Sci. Technol. 2018, 89, 719–724. [Google Scholar] [CrossRef]
- Esther, D.L.H.; Manuel, G.; Rosell, C.M. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties. Carbohydr. Polym. 2013, 98, 421–427. [Google Scholar] [Green Version]
- Gularte, M.A.; Rosell, C.M. Physicochemical properties and enzymatic hydrolysis of different starches in the presence of hydrocolloids. Carbohydr. Polym. 2011, 85, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yu, J.; Zhu, Q.; Yu, J.; Jin, F. Granular structure and allomorph position in C-type Chinese yam starch granule revealed by SEM, 13 C CP/MAS NMR and XRD. Food Hydrocoll. 2009, 23, 426–433. [Google Scholar] [CrossRef]
- Thirumdas, R.; Trimukhe, A.; Deshmukh, R.R.; Annapure, U.S. Functional and rheological properties of cold plasma treated rice starch. Carbohydr. Polym. 2017, 157, 1723–1731. [Google Scholar] [CrossRef]
- Lii, C.Y.; Liao, C.D.; Stobinski, L.; Tomasik, P. Behaviour of granular starches in low-pressure glow plasma. Carbohydr. Polym. 2002, 49, 499–507. [Google Scholar] [CrossRef]
- Pal, P.; Kaur, P.; Singh, N.; Kaur, A.; Misra, N.N.; Tiwari, B.K.; Cullen, P.J.; Virdi, A.S. Effect of nonthermal plasma on physico-chemical, amino acid composition, pasting and protein characteristics of short and long grain rice flour. Food Res. Int. 2016, 81, 50–57. [Google Scholar] [CrossRef]
- Sarangapani, C.; Thirumdas, R.; Devi, Y.; Trimukhe, A.; Deshmukh, R.R.; Annapure, U.S. Effect of low-pressure plasma on physico-chemical and functional properties of parboiled rice flour. LWT Food Sci. Technol. 2016, 69, 482–489. [Google Scholar] [CrossRef]
- Chen, P.; Xie, F.; Zhao, L.; Qiao, Q.; Liu, X. Effect of acid hydrolysis on the multi-scale structure change of starch with different amylose content. Food Hydrocoll. 2017, 69, 359–368. [Google Scholar] [CrossRef]
- Cheetham, N.W.H.; Tao, L. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydr. Polym. 1998, 36, 277–284. [Google Scholar] [CrossRef]
- Chen, H.H. Investigation of properties of long-grain brown rice treated by low-pressure plasma. Food Bioprocess Technol. 2014, 7, 2484–2491. [Google Scholar] [CrossRef]
- Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S. Characterization of modified tapioca starch in atmospheric argon plasma under diverse humidity by FTIR spectroscopy. Chin. Phys. Lett. 2013, 30, 018103. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Zhang, W.; Li, C.; Yu, J.; Wang, S. Molecular order and functional properties of starches from three waxy wheat varieties grown in China. Food Chem. 2015, 181, 43–50. [Google Scholar] [CrossRef]
- Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef]
- Capron, I.; Robert, P.; Colonna, P.; Brogly, M.; Planchot, V. Starch in rubbery and glassy states by FTIR spectroscopy. Carbohydr. Polym. 2007, 68, 249–259. [Google Scholar] [CrossRef]
- Sevenou, O.; Hill, S.E.; Farhat, I.A.; Mitchell, J.R. Organisation of the external region of the starch granule as determined by Infrared spectroscopy. Int. J. Bio. Macromol. 2002, 31, 79–85. [Google Scholar] [CrossRef]
- Soest, J.J.G.V.; Tournois, H.; Wit, D.D.; Vliegenthart, J.F.G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr. Res. 1995, 279, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Mutungi, C.; Passauer, L.; Onyango, C.; Jaros, D.; Rohm, H. Debranched cassava starch crystallinity determination by Raman spectroscopy: Correlation of features in Raman spectra with X-ray diffraction and 13 C CP/MAS NMR spectroscopy. Carbohydr. Polym. 2012, 87, 598–606. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food Sci. Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Yan, Y.; Hu, D.; Yang, L.; Shen, R. Application of Raman spectroscopy in structure analysis and crystallinity calculation of corn starch. Starch/Stärke 2015, 67, 612–619. [Google Scholar] [CrossRef]
- Bulkin, B.J.; Kwak, Y.; Dea, I.C.M. Retrogradation kinetics of waxy-corn and potato starches; a rapid, Raman-spectroscopic study. Carbohydr. Res. 1987, 160, 95–112. [Google Scholar] [CrossRef]
- Fechner, P.M.; Wartewig, S.; Kleinebudde, P.; Neubert, R.H. Studies of the retrogradation process for various starch gels using Raman spectroscopy. Carbohydr. Res. 2005, 340, 2563–2568. [Google Scholar] [CrossRef] [PubMed]
- Cooke, D.; Gidley, M.J. Loss of crystalline and molecular order during starch gelatinisation: Origin of the enthalpic transition. Carbohydr. Res. 1992, 227, 103–112. [Google Scholar] [CrossRef]
- Wongsagonsup, R.; Deeyai, P.; Chaiwat, W.; Horrungsiwat, S.; Leejariensuk, K.; Suphantharika, M.; Fuongfuchat, A.; Dangtip, S. Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma. Carbohydr. Polym. 2014, 102, 790–798. [Google Scholar] [CrossRef] [PubMed]
Sample | pH † | WBC † (%) | SV † (g/mL) | Ratio † at 1047/1022 cm−1 | FWHH † (cm−1) |
---|---|---|---|---|---|
WMS | 5.42 ± 0.06e | 105.19 ± 0.20a | 2.96 ± 0.04a | 1.0549 ± 0.0029b | 16.96 ± 0.07a |
WMS−1 | 5.21 ± 0.02d | 119.56 ± 0.27b | 3.05 ± 0.03b | 1.0524 ± 0.0028b | 17.06 ± 0.03a |
WMS−3 | 5.12 ± 0.03c | 127.44 ± 0.43c | 3.09 ± 0.04b | 1.0492 ± 0.0021ab | 17.41 ± 0.11b |
WMS−5 | 5.02 ± 0.02b | 127.66 ± 0.37c | 3.25 ± 0.03c | 1.0486 ± 0.0009ab | 17.52 ± 0.08bc |
WMS−7 | 4.97 ± 0.04a | 131.27 ± 0.22d | 3.33 ± 0.02d | 1.0472 ± 0.0074a | 17.60 ± 0.08c |
NMS | 5.09 ± 0.03d | 83.56 ± 0.46a | 2.75 ± 0.02a | 1.0311 ± 0.0014b | 17.44 ± 0.16a |
NMS−1 | 5.02 ± 0.04c | 86.23 ± 0.11b | 2.81 ± 0.03b | 1.0297 ± 0.0017ab | 17.88 ± 0.03b |
NMS−3 | 4.85 ± 0.04b | 90.16 ± 0.04c | 2.90 ± 0.07c | 1.0265 ± 0.0078ab | 17.84 ± 0.16b |
NMS−5 | 4.78 ± 0.05a | 95.82 ± 0.17d | 2.93 ± 0.03c | 1.0244 ± 0.0014ab | 17.85 ± 0.07b |
NMS−7 | 4.75 ± 0.02a | 95.61 ± 0.27d | 3.05 ± 0.01d | 1.0197 ± 0.0022a | 17.94 ± 0.12b |
Sample | To† (°C) | Tp† (°C) | Tc† (°C) | ΔH † (J/g) |
---|---|---|---|---|
WMS | 63.08 ± 0.06d | 69.83 ± 0.32a | 77.18 ± 0.43c | 16.78 ± 0.58c |
WMS−1 | 62.77 ± 0.46c | 69.88 ± 0.06a | 76.39 ± 0.30b | 15.64 ± 0.37bc |
WMS−3 | 62.37 ± 0.28b | 69.68 ± 0.11a | 75.38 ± 0.19a | 15.52 ± 0.23ab |
WMS−5 | 62.25 ± 0.22ab | 69.70 ± 0.12a | 75.40 ± 0.24a | 15.23 ± 0.31ab |
WMS−7 | 62.04 ± 0.05a | 69.61 ± 0.26a | 75.11 ± 0.13a | 14.87 ± 0.15a |
NMS | 64.90 ± 0.13c | 69.96 ± 0.22d | 75.75 ± 0.27b | 13.00 ± 0.11c |
NMS−1 | 63.41 ± 0.14b | 68.71 ± 0.25bc | 74.16 ± 0.27a | 12.64 ± 0.36b |
NMS−3 | 63.37 ± 0.20ab | 68.31 ± 0.09ab | 74.06 ± 0.39a | 12.31 ± 0.14ab |
NMS−5 | 63.26 ± 0.06ab | 68.19 ± 0.14a | 73.19 ± 20a | 12.26 ± 0.07a |
NMS−7 | 63.21 ± 0.03a | 68.87 ± 0.36c | 73.65 ± 0.25a | 12.17 ± 0.10a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Yan, Y.; Shi, M.; Liu, Y. Effect of an Atmospheric Pressure Plasma Jet on the Structure and Physicochemical Properties of Waxy and Normal Maize Starch. Polymers 2019, 11, 8. https://doi.org/10.3390/polym11010008
Zhou Y, Yan Y, Shi M, Liu Y. Effect of an Atmospheric Pressure Plasma Jet on the Structure and Physicochemical Properties of Waxy and Normal Maize Starch. Polymers. 2019; 11(1):8. https://doi.org/10.3390/polym11010008
Chicago/Turabian StyleZhou, Yaping, Yizhe Yan, Miaomiao Shi, and Yanqi Liu. 2019. "Effect of an Atmospheric Pressure Plasma Jet on the Structure and Physicochemical Properties of Waxy and Normal Maize Starch" Polymers 11, no. 1: 8. https://doi.org/10.3390/polym11010008
APA StyleZhou, Y., Yan, Y., Shi, M., & Liu, Y. (2019). Effect of an Atmospheric Pressure Plasma Jet on the Structure and Physicochemical Properties of Waxy and Normal Maize Starch. Polymers, 11(1), 8. https://doi.org/10.3390/polym11010008