Facile Fabrication of Superhydrophobic Copper- Foam and Electrospinning Polystyrene Fiber for Combinational Oil–Water Separation
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Fabrication of Superhydrophobic Cu Foam
2.3. Fabrication of PS Fiber
2.4. Wettability Measurement and Characterization
2.5. Stability in Rigid Condition
2.6. Oil/Water Separation and Oil Absorption of Superhydrophobic Cu Foam
3. Results and Discussion
3.1. Chemical Etching and Post-Modification
3.2. Structure and Morphology
3.3. Optimization of the Etching Process and Modification
3.4. Water Rebounding and Oil Penetrating Experiments
3.5. Oil-Water Separation and Oil Absorption
3.6. Fabrication of Mini-Foam-Copper Boat and As-Spun PS Fiber
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Rong, J.; Zhang, T.; Qiu, F.; Xu, J.; Zhu, Y.; Yang, D.; Dai, Y. Design and Preparation of Efficient, Stable and Superhydrophobic Copper Foam Membrane for Selective Oil Absorption and Consecutive Oil–water Separation. Mater. Des. 2018, 142, 83–92. [Google Scholar] [CrossRef]
- Sasmal, A.K.; Mondal, C.; Sinha, A.K.; Gauri, S.S.; Pal, J.; Aditya, T.; Ganguly, M.; Dey, S.; Pal, T. Fabrication of Superhydrophobic Copper Surface on Various Substrates for Roll-off, Self-Cleaning, and Water/Oil Separation. ACS Appl. Mater. Interfaces 2014, 6, 22034–22043. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liang, W.X.; Guo, Z.G.; Liu, W.M. Biomimetic Super-Lyophobic and SuperLyophilic Materials Applied for Oil/Water Separation: A New Strategy Beyond Nature. Chem. Soc. Rev. 2015, 44, 336–361. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Sathasivam, S.; Song, J.; Crick, C.R.; Carmalt, C.J.; Robust, I.P. Self-cleaning Surfaces that Function When Exposed to Either Air or Oil. Science 2015, 347, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.L.; Verho, T.; Ras, R.H.A. Moving Superhydrophobic Surfaces Toward Real-world Applications. Science 2016, 352, 142–143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cheng, L.; Wu, H.; Yoshioka, T.; Matsuyama, H. One-step Fabrication of Robust and Anti-oil-fouling Aliphatic Polyketone Composite Membranes for Sustainable and Efficient Filtration of Oil-in-water Emulsions. J. Mater. Chem. A 2018, 6, 24641–24650. [Google Scholar] [CrossRef]
- Parbata, D.; Manna, U. ‘Fish-scale’-mimicked Stretchable and Robust Oil-wettability that Performs in Various Practically Relevant Physically/Chemically Severe Scenarios. J. Mater. Chem. A 2018, 6, 22027–22036. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, X.; Akbulut, O.; Hu, J.; Suib, S.L.; Kong, J.; Stellacci, F. Superwetting Nanowire Membranes for Selective Absorption. Nat. Nanotechnol. 2008, 3, 332–336. [Google Scholar] [CrossRef]
- Si, Y.F.; Guo, Z.G. Superhydrophobic Nanocoatings: From Materials to Fabrications and to Applications. Nanoscale 2015, 7, 5922–5946. [Google Scholar] [CrossRef]
- Cheng, M.J.; Gao, Y.F.; Guo, X.P.; Shi, Z.Y.; Chen, J.F.; Shi, F. A Functionally Integrated Device for Effective and Facile Oil Spill Cleanup. Langmuir 2011, 27, 7371–7375. [Google Scholar] [CrossRef]
- Oil/Water Separation Experience from a Large Oil Field. Available online: https://doi.org/10.2118/93386-PA (accessed on 2 January 2019).
- Emulsion Treatment in the Oil Industry: A Case Study of Oredo Field Crude Oil Emulsion. Available online: https://doi.org/10.2118/178381-MS (accessed on 2 January 2019).
- Dilimon, V.S.; Denayer, J.; Delhalle, J.; Mekhalif, Z. Electrochemical and Spectroscopic Study of the Self-Assembling Mechanism of Normal and Chelating Alkanethiols on Copper. Langmuir 2012, 28, 6857–6865. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Hu, C.; Yang, C.; An, K.; Tang, F.; Tan, J.; Liu, C. Rough Structure of Electrodeposition as a Template for an Ultrarobust Self-Cleaning Surface. ACS Appl. Mater. Interfaces 2017, 9, 16571–16580. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.P.; Choi, S.; Park, S. Extremely Superhydrophobic Surfaces with Micro- and Nanostructures Fabricated by Copper Catalytic Etching. Langmuir 2011, 27, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Yazdanshenas, M.E.; Shateri-Khalilabad, M. One-Step Synthesis of Superhydrophobic Coating on Cotton Fabric by Ultrasound Irradiation. Ind. Eng. Chem. Res. 2013, 52, 12846–12854. [Google Scholar] [CrossRef]
- Coclite, A.M.; Howden, R.M.; Borrelli, D.C.; Petruczok, C.D.; Yang, R.; Yagüe, J.L.; Ugur, A.; Chen, N.; Lee, S.; Jo, W.J.; et al. A New Paradigm for Surface Modifi Cation and Device Fabrication. Adv. Mater. 2013, 25, 5392–5423. [Google Scholar] [CrossRef] [PubMed]
- Shirtcliffe, N.J.; McHale, G.; Newton, M.I.; Zhang, Y. Superhydrophobic Copper Tubes with Possible Flow Enhancement and Drag Reduction. ACS Appl. Mater. Interfaces 2009, 1, 1316–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Chen, S.G.; Yu, F.; Sun, W.W.; Zhu, H.Y.; Yin, Y.S. Fabrication and Anti-corrosion Property of Superhydrophobic Hybrid Film on Copper Surface and Its Formation Mechanism. Surf. Interface Anal. 2009, 41, 872–877. [Google Scholar] [CrossRef]
- Chaudhary, A.; Barshilia, H.C. Nanometric Multiscale Rough CuO/Cu(OH)2 Superhydrophobic Surfaces Prepared by a Facile One-Step Solution-Immersion Process: Transition to Superhydrophilicity with Oxygen Plasma Treatment. J. Phys. Chem. C 2011, 115, 18213–18220. [Google Scholar] [CrossRef]
- Liu, L.J.; Xu, F.Y.; Ma, L. Facile Fabrication of a Superhydrophobic Cu Surface via a Selective Etching of High-Energy Facets. J. Phys. Chem. C 2012, 116, 18722–18727. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Du, M.; Fu, K.W.; Zhang, N.Q.; Sun, K.N. pH-Controllable Water Permeation through a Nanostructured Copper Mesh Film. ACS Appl. Mater. Interfaces 2012, 4, 5826–5832. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Xu, D.G.; Hung, T.F.; Zhang, K.L. Facile Synthesis, Growth Mechanism and Reversible Superhydrophobic and Superhydrophilic Properties of Non-flaking CuO Nanowires Grown from Porous Copper Substrates. Nanotechnology 2013, 24, 065602–065614. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Yao, K. Facile Fabrication of Superhydrophobic Surface with Excellent Mechanical Abrasion and Corrosion Resistance on Copper Substrate by a Novel Method. ACS Appl. Mater. Interfaces 2014, 6, 8762–8770. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, Q.; Xiao, H.B.; Xu, J.; Li, Q.T.; Pan, X.H.; Huang, Z.Y. Cu Mesh’s Super-hydrophobic and Oleophobic Properties with Variations in Gravitational Pressure and Surface Components for Oil/water Separation Applications. Appl. Surf. Sci. 2014, 314, 408–414. [Google Scholar] [CrossRef]
- Vilaró, I.; Yagüe, J.L.; Borros, S. Superhydrophobic Copper Surfaces with Anti-corrosion Properties Fabricated by Solventless CVD Methods. ACS Appl. Mater. Interfaces 2017, 9, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Guo, Z.G.A. Superhydrophobic Copper Mesh with Microrod Structure for Oil–Water Separation Inspired from Ramee Leaf. Chem. Lett. 2014, 43, 1645–1647. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Wang, J.W.; Lai, H.; Du, Y.; Hou, R.; Li, C.; Zhang, N.Q.; Sun, K.N. pH-Controllable On-Demand Oil/Water Separation on the Switchable Superhydrophobic/Superhydrophilic and Underwater Low-Adhesive Superoleophobic Copper Mesh Film. Langmuir 2015, 31, 1393–1399. [Google Scholar] [CrossRef]
- Wang, B.; Guo, Z.G. pH-responsive Bidirectional Oil–water Separation Material. Chem. Commun. 2013, 49, 9416–9418. [Google Scholar] [CrossRef]
- Shi, Y.L.; Yang, W.; Bai, J.J.; Feng, X.J.; Wang, Y.S. Fabrication of Flower-like Copper Film with Reversible Superhydrophobicity–superhydrophilicity and Anticorrosion Properties. Surf. Coat. Technol. 2014, 253, 148–153. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, W.; Feng, Y.; Yue, G. Fabrication of Superhydrophobic-superoleophilic Copper Mesh via Thermal Oxidation and Its Application in Oil–water Separation. Appl. Surf. Sci. 2016, 367, 493–499. [Google Scholar]
- Guo, J.; Yang, F.C.; Guo, Z.G. Fabrication of Stable and Durable Superhydrophobic Surface on Copper Substrates for Oil–water Separation and Ice-over Delay. J. Colloid Interface Sci. 2016, 466, 36–43. [Google Scholar] [CrossRef]
- Didaskalou, C.; Kupai, J.; Cseri, L.; Barabas, J.; Vass, E.; Holtzl, T.; Szekely, G. Membrane-Grafted Asymmetric Organocatalyst for an Integrated Synthesis–Separation Platform. ACS Catal. 2018, 8, 7430–7438. [Google Scholar] [CrossRef]
- Fodi, T.; Didaskalou, C.; Kupai, J.; Balogh, G.T.; Huszthy, P.; Szekely, G. Nanofiltration-Enabled In Situ Solvent and Reagent Recycle for Sustainable Continuous-Flow Synthesis. Chem. Sustain. Chem. 2017, 10, 3435–3444. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, Y.; Zhan, B.; Kaya, C.; Stegmaier, T.; Han, Z.W.; Ren, L.Q. Fabrication of Bioinspired Structured Superhydrophobic and Superoleophilic Copper Mesh for Efficient Oil-water Separation. J. Bionic Eng. 2017, 14, 497–505. [Google Scholar] [CrossRef]
- Laibinis, P.E.; Whitesides, G.M. Self-Assembled Monolayers of n- Alkanethiolates on Copper Are Barrier Films That Protect the Metal against Oxidation by Air. J. Am. Chem. Soc. 1992, 114, 9022–9028. [Google Scholar] [CrossRef]
- Jennings, G.K.; Munro, J.C.; Yong, T.-H.; Laibinis, P.E. Effect of Chain Length on the Protection of Copper by n-Alkanethiols. Langmuir 1998, 14, 6130–6139. [Google Scholar] [CrossRef]
- Sung, M.M.; Sung, K.; Kim, C.G.; Lee, S.S.; Kim, Y. Self-Assembled Monolayers of Alkanethiols on Oxidized Copper Surfaces. J. Phys. Chem. B 2000, 104, 2273–2277. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Q.; Fan, W.; Qiu, X. Boron Nitride Encapsulated Copper Nanoparticles: A Facile One-step Synthesis and Their Effect on Thermal Decomposition of Ammonium Perchlorate. Sci. Rep. 2015, 5, 16736–16746. [Google Scholar] [CrossRef]
- Wang, F.; Lei, S.; Xue, M.; Ou, J.; Li, W. In situ Separation and Collection of Oil from Water Surface via a Novel Superoleophilic and Superhydrophobic Oil Containment Boom. Langmiur 2014, 30, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, C.; Yang, S.; Xie, H.; Gong, M.G.; Xu, X.L. Fabrication of Superhydrophilic-underwater Superolophobic Inorganic anti-Corrsosive Membranes for High-efficiency oil/water Separation. Phys. Chem. Chem. Phys. 2016, 18, 1317–1325. [Google Scholar] [CrossRef]
- Fernando, C.A.N.; De Silva, P.H.C.; Wethasinha, S.K.; Dharmadasa, I.M.; Delsol, T.; Simmonds, M.C. Investigation of n-type Cu2O Layers Prepared by a Low Cost Chemical Method for Use in Photo-voltaic Thin Film Solar Cells. Renew. Energy 2002, 26, 521–529. [Google Scholar] [CrossRef]
- Aizenberg, J.; Black, A.J.; Whitesides, G.M. Controlling Local Disorder in Self-Assembled Monolayers by Patterning the Topography of Their Metallic Supports. Nature 1998, 394, 868–871. [Google Scholar] [CrossRef]
- Calderόn, C.A.; Ojeda, C.; Macagno, V.A.; Paredes-Olivera, P.; Patrito, E.M. Interaction of Oxidized Copper Surfaces with Alkanethiols in Organic and Aqueous Solvents. The Mechanism of Cu2O Reduction. J. Phys. Chem. C 2010, 114, 3945–3957. [Google Scholar] [CrossRef]
- Chen, P.Y.; Tung, S.H. One-Step Electrospinning to Produce Nonsolvent-Induced Macroporous Fibers with Ultrahigh Oil Adsorption Capability. Macromolecules 2017, 50, 2528–2534. [Google Scholar] [CrossRef]
- Lee, M.W.; An, S.; Latthe, S.S.; Lee, C.; Hong, S.; Yoon, S.S. Electrospun Polystyrene Nanofiber Membrane with Superhydrophobicity and Superoleophilicity for Selective Separation of Water and Low Viscous Oil. ACS Appl. Mater. Interfaces 2013, 5, 10597–10604. [Google Scholar] [CrossRef] [PubMed]
C (mM) | 1 | 5 | 10 | 15 | 20 |
WCA (°) | 154.4 ± 1.6 | 158.3 ± 1.5 | 154 ± 1.7 | 150 ± 1.5 | 156 ± 1.7 |
m1 (g) | 0.0447 | 0.0443 | 0.0416 | 0.0417 | 0.0403 |
m2 (g) | 0.4638 | 0.1967 | 0.1981 | 0.1957 | 0.1856 |
Ac | 3.5 | 3.4 | 3.8 | 3.7 | 3.6 |
No. | CTAB (w/v %) | SDS (w/v %) | Tween80 (w/v %) | Trition-X-100 (w/v %) | TBAP (w/v %) | Fiber Diameter (μm) | Absorption Capacity (g g−1) |
---|---|---|---|---|---|---|---|
a | 0.032 | - | - | - | - | 3.4 ± 0.1 | 60.2 ± 4.3 |
b | 1.0 | - | - | - | - | 2.2 ± 0.5 | 85.4 ± 3.2 |
c | - | 0.032 | - | - | - | 2.7 ± 0.1 | 51.2 ± 4.4 |
d | - | 1.0 | - | - | 1.5 ± 0.3 | 72.8 ± 2.5 | |
e | - | - | 0.55 | - | - | 2.8 ± 0.2 | 42.2 ± 4.6 |
f | - | - | 1.0 | - | - | 3.9 ± 0.1 | 40.5 ± 5.1 |
g | - | - | - | 0.012 | - | 1.6 ± 0.6 | 43.1 ± 3.5 |
h | - | - | - | 1.0 | - | 2.1 ± 0.2 | 44.5 ± 2.7 |
i | - | - | - | - | 0.0 | 3.7 ± 0.1 | 24.4 ± 5.3 |
j | - | - | - | - | 1.0 | 2.4 ± 0.2 | 34.8 ± 6.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-P.; Yang, J.-H.; Li, L.-L.; Cui, C.-X.; Li, Y.; Liu, S.-Q.; Zhou, X.-M.; Qu, L.-B. Facile Fabrication of Superhydrophobic Copper- Foam and Electrospinning Polystyrene Fiber for Combinational Oil–Water Separation. Polymers 2019, 11, 97. https://doi.org/10.3390/polym11010097
Zhang Y-P, Yang J-H, Li L-L, Cui C-X, Li Y, Liu S-Q, Zhou X-M, Qu L-B. Facile Fabrication of Superhydrophobic Copper- Foam and Electrospinning Polystyrene Fiber for Combinational Oil–Water Separation. Polymers. 2019; 11(1):97. https://doi.org/10.3390/polym11010097
Chicago/Turabian StyleZhang, Yu-Ping, Jing-Hua Yang, Ling-Li Li, Cheng-Xing Cui, Ying Li, Shan-Qin Liu, Xiao-Mao Zhou, and Ling-Bo Qu. 2019. "Facile Fabrication of Superhydrophobic Copper- Foam and Electrospinning Polystyrene Fiber for Combinational Oil–Water Separation" Polymers 11, no. 1: 97. https://doi.org/10.3390/polym11010097
APA StyleZhang, Y. -P., Yang, J. -H., Li, L. -L., Cui, C. -X., Li, Y., Liu, S. -Q., Zhou, X. -M., & Qu, L. -B. (2019). Facile Fabrication of Superhydrophobic Copper- Foam and Electrospinning Polystyrene Fiber for Combinational Oil–Water Separation. Polymers, 11(1), 97. https://doi.org/10.3390/polym11010097