Electroluminochromic Materials: From Molecules to Polymers
Abstract
:1. Introduction to Electroluminochromism
2. Organic Small ELC Molecules
2.1. ELC Dyads
2.1.1. Ferrocence-Based ELC Dyads
2.1.2. Tetrazine-Based ELC Dyads
2.1.3. Tetrathiafulvalene-Based ELC Dyad
2.1.4. Redox-Active Moiety—Fluorophore Mixed System
2.2. Electroactive and Redox-Active Fluorophores
2.2.1. Structurally Functionalized Conventional Fluorophores
2.2.2. Benzothiadiazole Containing Push-Pull Fluorophore
2.2.3. Triarylamine-Based ELC Molecules
2.2.4. Viologen-Like ELC Molecules
3. ELC Transition Metal Complexes
3.1. ELC Ruthenium Complexes
3.2. ELC Iridium Complexes
4. ELC Polymers
4.1. Non-Conjugated Polymers
4.1.1. ELC Poly(p-Phenylene Vinylene) and Poly(Ethylenes)
4.1.2. ELC Poly(amides) and Poly(imides)
4.1.3. ELC Block Co-Polymers
4.2. Conjugated Polymers
4.2.1. ELC Carbazole-Containing Conjugated Polymers
4.2.2. ELC Fluorene-Containing Conjugated Polymers
4.2.3. ProDOT-Based ELC-Conjugated Polymers
4.2.4. ELC-Conjugated Polymers Containing Oxazole
4.2.5. Triphenylamine-Based ELC-Conjugated Polymers
5. Conclusions and Perspective
Funding
Acknowledgments
Conflicts of Interest
References
- Gunbas, G.; Toppare, L. Electrochromic conjugated polyheterocycles and derivatives—Highlights from the last decade towards realization of long lived aspirations. Chem. Commun. (Camb.) 2012, 48, 1083–1101. [Google Scholar] [CrossRef] [PubMed]
- Neo, W.T.; Ye, Q.; Chua, S.-J.; Xu, J. Conjugated polymer-based electrochromics: Materials, device fabrication and application prospects. J. Mater. Chem. C 2016, 4, 7364–7376. [Google Scholar] [CrossRef]
- Mortimer, R.J. Electrochromic materials. Annu. Rev. Mater. Res. 2011, 41, 241–268. [Google Scholar] [CrossRef]
- Würthner, F.; Kaiser, T.E.; Saha-Möller, C.R. J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed. 2011, 50, 3376–3410. [Google Scholar] [CrossRef] [PubMed]
- Varughese, S. Non-covalent routes to tune the optical properties of molecular materials. J. Mater. Chem. C 2014, 2, 3499–3516. [Google Scholar] [CrossRef]
- Curtis, M.D.; Cao, J.; Kampf, J.W. Solid-state packing of conjugated oligomers: From π-stacks to the herringbone structure. J. Am. Chem. Soc. 2004, 126, 4318–4328. [Google Scholar] [CrossRef]
- Förster, T. Excimers. Angew. Chem. Int. Ed. Engl. 1969, 8, 333–343. [Google Scholar] [CrossRef]
- Gao, M.; Tang, B.Z. Fluorescent sensors based on aggregation-induced emission: Recent advances and perspectives. ACS Sens. 2017, 2, 1382–1399. [Google Scholar] [CrossRef]
- La, D.D.; Bhosale, S.V.; Jones, L.A.; Bhosale, S.V. Tetraphenylethylene-based aie-active probes for sensing applications. ACS Appl. Mater. Interfaces 2018, 10, 12189–12216. [Google Scholar] [CrossRef]
- Mei, J.; Huang, Y.; Tian, H. Progress and trends in aie-based bioprobes: A brief overview. ACS Appl. Mater. Interfaces 2018, 10, 12217–12261. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef] [PubMed]
- Audebert, P.; Miomandre, F. Electrofluorochromism: From molecular systems to set-up and display. Chem. Sci. 2013, 4, 575–584. [Google Scholar] [CrossRef]
- Seo, S.; Shin, H.; Park, C.; Lim, H.; Kim, E. Electrofluorescence switching of fluorescent polymer film. Macromol. Res. 2013, 21, 284–289. [Google Scholar] [CrossRef]
- Al-Kutubi, H.; Zafarani, H.R.; Rassaei, L.; Mathwig, K. Electrofluorochromic systems: Molecules and materials exhibiting redox-switchable fluorescence. Eur. Polym. J. 2016, 83, 478–498. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Y.; Liang, Z. Electroluminochromic materials and devices. Adv. Funct. Mater. 2016, 26, 2783–2799. [Google Scholar] [CrossRef]
- Martinez, R.; Ratera, I.; Tarraga, A.; Molina, P.; Veciana, J. A simple and robust reversible redox-fluorescence molecular switch based on a 1,4-disubstituted azine with ferrocene and pyrene units. Chem. Commun. (Camb.) 2006, 3809–3811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, Z.; Wu, Y.; Fu, H.; Yao, J. A novel redox-fluorescence switch based on a triad containing ferrocene and perylene diimide units. Org. Lett. 2008, 10, 3065–3068. [Google Scholar] [CrossRef]
- Galangau, O.; Fabre-Francke, I.; Munteanu, S.; Dumas-Verdes, C.; Clavier, G.; Méallet-Renault, R.; Pansu, R.B.; Hartl, F.; Miomandre, F. Electrochromic and electrofluorochromic properties of a new boron dipyrromethene–ferrocene conjugate. Electrochim. Acta 2013, 87, 809–815. [Google Scholar] [CrossRef]
- Kim, Y.; Do, J.; Kim, E.; Clavier, G.; Galmiche, L.; Audebert, P. Tetrazine-based electrofluorochromic windows: Modulation of the fluorescence through applied potential. J. Electroanal. Chem. 2009, 632, 201–205. [Google Scholar] [CrossRef]
- Seo, S.; Kim, Y.; Zhou, Q.; Clavier, G.; Audebert, P.; Kim, E. White electrofluorescence switching from electrochemically convertible yellow fluorescent dyad. Adv. Funct. Mater. 2012, 22, 3556–3561. [Google Scholar] [CrossRef]
- Quinton, C.; Alain-Rizzo, V.; Dumas-Verdes, C.; Clavier, G.; Audebert, P. Original electroactive and fluorescent bichromophores based on non-conjugated tetrazine and triphenylamine derivatives: Towards more efficient fluorescent switches. RSC Adv. 2015, 5, 49728–49738. [Google Scholar] [CrossRef]
- Bill, N.L.; Lim, J.M.; Davis, C.M.; Bahring, S.; Jeppesen, J.O.; Kim, D.; Sessler, J.L. Pi-extended tetrathiafulvalene bodipy (ex-ttf-bodipy): A redox switched “on-off-on” electrochromic system with two near-infrared fluorescent outputs. Chem. Commun. (Camb.) 2014, 50, 6758–6761. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Kanazawa, K.; Kobayashi, N. Electrochemically controllable emission and coloration by using europium(iii) complex and viologen derivatives. Chem. Commun. (Camb.) 2011, 47, 10064–10066. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Li, W.; Wang, X.; Yang, B.; Li, M.; Zhang, S.X. Highly durable colour/emission switching of fluorescein in a thin film device using “electro-acid/base” as in situ stimuli. Chem. Commun. (Camb.) 2014, 50, 1420–1422. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, W.; Li, W.; Gu, C.; Zheng, H.; Wang, Y.; Zhang, Y.M.; Li, M.; Xiao-An Zhang, S. An rgb color-tunable turn-on electrofluorochromic device and its potential for information encryption. Chem. Commun. (Camb.) 2017, 53, 11209–11212. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Pascal, S.; Park, C.; Shin, K.; Yang, X.; Maury, O.; Sarwade, B.D.; Andraud, C.; Kim, E. Nir electrochemical fluorescence switching from polymethine dyes. Chem. Sci. 2014, 5, 1538–1544. [Google Scholar] [CrossRef]
- Lim, H.; Seo, S.; Pascal, S.; Bellier, Q.; Rigaut, S.; Park, C.; Shin, H.; Maury, O.; Andraud, C.; Kim, E. Nir electrofluorochromic properties of aza-boron-dipyrromethene dyes. Sci. Rep. 2016, 6, 18867. [Google Scholar] [CrossRef]
- Čížková, M.; Cattiaux, L.; Mallet, J.-M.; Labbé, E.; Buriez, O. Electrochemical switching fluorescence emission in rhodamine derivatives. Electrochim. Acta 2018, 260, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Wałęsa-Chorab, M.; Tremblay, M.-H.; Ettaoussi, M.; Skene, W.G. Photophysical, electrochemical, and spectroelectrochemical investigation of electronic push–pull benzothiadiazole fluorophores. Pure Appl. Chem. 2015, 87, 649–661. [Google Scholar] [CrossRef]
- Yen, H.-J.; Liou, G.-S. Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polym. Chem. 2018, 9, 3001–3018. [Google Scholar] [CrossRef]
- Quinton, C.; Alain-Rizzo, V.; Dumas-Verdes, C.; Miomandre, F.; Clavier, G.; Audebert, P. Redox-controlled fluorescence modulation (electrofluorochromism) in triphenylamine derivatives. RSC Adv. 2014, 4, 34332–34342. [Google Scholar] [CrossRef]
- Quinton, C.; Alain-Rizzo, V.; Dumas-Verdes, C.; Miomandre, F.; Clavier, G.; Audebert, P. Redox- and protonation-induced fluorescence switch in a new triphenylamine with six stable active or non-active forms. Chemistry 2015, 21, 2230–2240. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Daniel, J.; Verlhac, J.B.; Blanchard-Desce, M.; Sojic, N. Bright electrogenerated chemiluminescence of a bis-donor quadrupolar spirofluorene dye and its nanoparticles. Chemistry 2016, 22, 12702–12714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, Z.; Wang, X.-Y.; Guo, S.-Z.; Dong, Y.-B.; Yu, G.-A.; Yin, J.; Liu, S.-H. Redox-modulated near-infrared electrochromism, electroluminochromism, and aggregation-induced fluorescence change in an indolo[3,2-b]carbazole-bridged diamine system. Sens. Actuators B: Chem. 2017, 246, 570–577. [Google Scholar] [CrossRef]
- Walesa-Chorab, M.; Tremblay, M.H.; Skene, W.G. Hydrogen-bond and supramolecular-contact mediated fluorescence enhancement of electrochromic azomethines. Chemistry 2016, 22, 11382–11393. [Google Scholar] [CrossRef] [PubMed]
- Beneduci, A.; Cospito, S.; La Deda, M.; Veltri, L.; Chidichimo, G. Electrofluorochromism in pi-conjugated ionic liquid crystals. Nat. Commun. 2014, 5, 3105. [Google Scholar] [CrossRef]
- Beneduci, A.; Cospito, S.; Deda, M.L.; Chidichimo, G. Highly fluorescent thienoviologen-based polymer gels for single layer electrofluorochromic devices. Adv. Funct. Mater. 2015, 25, 1240–1247. [Google Scholar] [CrossRef]
- Woodward, A.N.; Kolesar, J.M.; Hall, S.R.; Saleh, N.A.; Jones, D.S.; Walter, M.G. Thiazolothiazole fluorophores exhibiting strong fluorescence and viologen-like reversible electrochromism. J. Am. Chem. Soc. 2017, 139, 8467–8473. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, J.; Li, M.; Zheng, J.; Xu, C. Novel electrochromic-fluorescent bi-functional devices based on aromatic viologen derivates. Electrochim. Acta 2018, 285, 415–423. [Google Scholar] [CrossRef]
- Yam, V.W.-W.; Wong, K.M.-C. Luminescent metal complexes of d6, d8 and d10 transition metal centres. Chem. Commun. 2011, 47, 11579–11592. [Google Scholar] [CrossRef] [PubMed]
- Goulle, V.; Harriman, A.; Lehn, J.-M. An electro-photoswitch: Redox switching of the luminescence of a bipyridine metal complex. J. Chem. Soc. Chem. Commun. 1993, 1034–1036. [Google Scholar] [CrossRef]
- Nie, H.J.; Yang, W.W.; Shao, J.Y.; Zhong, Y.W. Ruthenium-tris(bipyridine) complexes with multiple redox-active amine substituents: Tuning of spin density distribution and deep-red to nir electrochromism and electrofluorochromism. Dalton Trans. 2016, 45, 10136–10140. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Xu, W.; Sun, H.; Yang, J.; Zhang, K.Y.; Liu, S.; Ma, Y.; Huang, W. Tunable electrochromic luminescence of iridium(iii) complexes for information self-encryption and anti-counterfeiting. Adv. Opt. Mater. 2016, 4, 1167–1173. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Chen, X.; Sun, G.; Zhang, T.; Liu, S.; Zhao, Q.; Huang, W. Utilization of electrochromically luminescent transition-metal complexes for erasable information recording and temperature-related information protection. Adv. Mater. 2016, 28, 7137–7142. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Huang, T.; Liu, S.; Zhang, K.Y.; Yang, H.; Han, J.; Zhao, Q.; Huang, W. Luminescent ion pairs with tunable emission colors for light-emitting devices and electrochromic switches. Chem. Sci. 2017, 8, 348–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Yang, J.; Liu, S.; Xia, H.; She, P.; Jiang, R.; Zhao, Q. Phosphorescent ionic iridium(iii) complexes displaying counterion-dependent emission colors for flexible electrochromic luminescence device. Adv. Opt. Mater. 2017, 5, 1700587. [Google Scholar] [CrossRef]
- Yoo, J.; Kwon, T.; Sarwade, B.D.; Kim, Y.; Kim, E. Multistate fluorescence switching of s-triazine-bridged p-phenylene vinylene polymers. Appl. Phys. Lett. 2007, 91, 241107. [Google Scholar] [CrossRef]
- Abraham, S.; Mangalath, S.; Sasikumar, D.; Joseph, J. Transmissive-to-black electrochromic devices based on cross-linkable tetraphenylethene-diphenylamine derivatives. Chem. Mater. 2017, 29, 9877–9881. [Google Scholar] [CrossRef]
- Walesa-Chorab, M.; Skene, W.G. Visible-to-nir electrochromic device prepared from a thermally polymerizable electroactive organic monomer. ACS Appl. Mater. Interfaces 2017, 9, 21524–21531. [Google Scholar] [CrossRef]
- Sun, N.; Feng, F.; Wang, D.; Zhou, Z.; Guan, Y.; Dang, G.; Zhou, H.; Chen, C.; Zhao, X. Novel polyamides with fluorene-based triphenylamine: Electrofluorescence and electrochromic properties. RSC Adv. 2015, 5, 88181–88190. [Google Scholar] [CrossRef]
- Sun, N.; Zhou, Z.; Chao, D.; Chu, X.; Du, Y.; Zhao, X.; Wang, D.; Chen, C. Novel aromatic polyamides containing 2-diphenylamino-(9,9-dimethylamine) units as multicolored electrochromic and high-contrast electrofluorescent materials. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 213–222. [Google Scholar] [CrossRef]
- Sun, N.; Meng, S.; Chao, D.; Zhou, Z.; Du, Y.; Wang, D.; Zhao, X.; Zhou, H.; Chen, C. Highly stable electrochromic and electrofluorescent dual-switching polyamide containing bis(diphenylamino)-fluorene moieties. Polym. Chem. 2016, 7, 6055–6063. [Google Scholar] [CrossRef]
- Sun, N.; Zhou, Z.; Meng, S.; Chao, D.; Chu, X.; Zhao, X.; Wang, D.; Zhou, H.; Chen, C. Aggregation-enhanced emission (aee)-active polyamides with methylsulfonyltriphenylamine units for electrofluorochromic applications. Dyes Pigment. 2017, 141, 356–362. [Google Scholar] [CrossRef]
- Sun, N.; Tian, X.; Hong, L.; Su, K.; Zhou, Z.; Jin, S.; Wang, D.; Zhao, X.; Zhou, H.; Chen, C. Highly stable and fast blue color/fluorescence dual-switching polymer realized through the introduction of ether linkage between tetraphenylethylene and triphenylamine units. Electrochim. Acta 2018, 284, 655–661. [Google Scholar] [CrossRef]
- Sun, N.; Su, K.; Zhou, Z.; Yu, Y.; Tian, X.; Wang, D.; Zhao, X.; Zhou, H.; Chen, C. Aie-active polyamide containing diphenylamine-tpe moiety with superior electrofluorochromic performance. ACS Appl. Mater. Interfaces 2018, 10, 16105–16112. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-W.; Han, T.; Huang, T.-Y.; Tang, B.-Z.; Liou, G.-S. High-performance electrofluorochromic devices based on aromatic polyamides with aie-active tetraphenylethene and electro-active triphenylamine moieties. Polym. Chem. 2018, 9, 4364–4373. [Google Scholar] [CrossRef]
- Cai, S.; Wang, S.; Wei, D.; Niu, H.; Wang, W.; Bai, X. Multifunctional polyamides containing pyrrole unit with different triarylamine units owning electrochromic, electrofluorochromic and photoelectron conversion properties. J. Electroanal. Chem. 2018, 812, 132–142. [Google Scholar] [CrossRef]
- Yen, H.J.; Liou, G.S. Flexible electrofluorochromic devices with the highest contrast ratio based on aggregation-enhanced emission (aee)-active cyanotriphenylamine-based polymers. Chem. Commun. (Camb.) 2013, 49, 9797–9799. [Google Scholar] [CrossRef]
- Yen, H.-J.; Chang, C.-W.; Wong, H.Q.; Liou, G.-S. Cyanotriphenylamine-based polyimidothioethers as multifunctional materials for ambipolar electrochromic and electrofluorochromic devices, and fluorescent electrospun fibers. Polym. Chem. 2018, 9, 1693–1700. [Google Scholar] [CrossRef]
- Yan, Y.; Jia, X.; Li, Y.; Liu, X.; Wang, C.; Chao, D. New electrofluorochromic polymer bearing oligoaniline, carbazole, and polyhedral oligomeric silsesquioxane: Synthesis and properties. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3968–3972. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, Y.; Jia, X.; Chao, D. Synthesis and characterization of a dual electrochromic and electrofluorochromic crosslinked polymer. Eur. Polym. J. 2018, 106, 169–174. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Jia, X.; Chao, D. Dual functional electrochromic and electrofluorochromic network polymer film prepared from two hydrolysable crosslinked siloxane monomers. J. Electroanal. Chem. 2018, 823, 672–677. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, N.; Jia, X.; Liu, X.; Wang, C.; Chao, D. Electrochromic and electrofluorochromic behavior of novel polyurea bearing oligoaniline and triphenylamine units. Polymer 2018, 134, 1–7. [Google Scholar] [CrossRef]
- Sotzing, G.A.; Reddinger, J.L.; Katritzky, A.R.; Soloducho, J.; Musgrave, R.; Reynolds, J.R.; Steel, P.J. Multiply colored electrochromic carbazole-based polymers. Chem. Mater. 1997, 9, 1578–1587. [Google Scholar] [CrossRef]
- Witker, D.; Reynolds, J.R. Soluble variable color carbazole-containing electrochromic polymers. Macromolecules 2005, 38, 7636–7644. [Google Scholar] [CrossRef]
- Cansu-Ergun, E.G.; Önal, A.M. Carbazole based electrochromic polymers bearing ethylenedioxy and propylenedioxy scaffolds. J. Electroanal. Chem. 2018, 815, 158–165. [Google Scholar] [CrossRef]
- Kawabata, K.; Goto, H. Dynamically controllable emission of polymer nanofibers: Electrofluorescence chromism and polarized emission of polycarbazole derivatives. Chemistry 2012, 18, 15065–15072. [Google Scholar] [CrossRef]
- Ding, G.; Zhou, H.; Xu, J.; Lu, X. Electrofluorochromic detection of cyanide anions using a benzothiadiazole-containing conjugated copolymer. Chem. Commun. 2014, 50, 655–657. [Google Scholar] [CrossRef]
- Ding, G.; Lin, T.; Zhou, R.; Dong, Y.; Xu, J.; Lu, X. Electrofluorochromic detection of cyanide anions using a nanoporous polymer electrode and the detection mechanism. Chemistry 2014, 20, 13226–13233. [Google Scholar] [CrossRef]
- Yang, C.; Cai, W.; Zhang, X.; Gao, L.; Lu, Q.; Chen, Y.; Zhang, Z.; Zhao, P.; Niu, H.; Wang, W. Multifunctional conjugated oligomers containing novel triarylamine and fluorene units with electrochromic, electrofluorochromic, photoelectron conversion, explosive detection and memory properties. Dyes Pigment. 2019, 160, 99–108. [Google Scholar] [CrossRef]
- Kuo, C.-P.; Lin, Y.-S.; Leung, M.-K. Electrochemical fluorescence switching properties of conjugated polymers composed of triphenylamine, fluorene, and cyclic urea moieties. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 5068–5078. [Google Scholar] [CrossRef]
- Kuo, C.-P.; Chuang, C.-N.; Chang, C.-L.; Leung, M.-K.; Lian, H.-Y.; Chia-Wen Wu, K. White-light electrofluorescence switching from electrochemically convertible yellow and blue fluorescent conjugated polymers. J. Mater. Chem. C 2013, 1, 2121. [Google Scholar] [CrossRef]
- Kuo, C.-P.; Chang, C.-L.; Hu, C.-W.; Chuang, C.-N.; Ho, K.-C.; Leung, M.-k. Tunable electrofluorochromic device from electrochemically controlled complementary fluorescent conjugated polymer films. ACS Appl. Mater. Interfaces 2014, 6, 17402–17409. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Seo, S.; Park, C.; Kim, E. Electrical chiral assembly switching of soluble conjugated polymers from propylenedioxythiophene-phenylene copolymers. Macromolecules 2014, 47, 7043–7051. [Google Scholar] [CrossRef]
- Mi, S.; Wu, J.; Liu, J.; Xu, Z.; Wu, X.; Luo, G.; Zheng, J.; Xu, C. Aiee-active and electrochromic bifunctional polymer and a device composed thereof synchronously achieve electrochemical fluorescence switching and electrochromic switching. ACS Appl. Mater Interfaces 2015, 7, 27511–27517. [Google Scholar] [CrossRef]
- Liu, J.; Li, M.; Wu, J.; Shi, Y.; Zheng, J.; Xu, C. Electrochromic polymer achieving synchronous electrofluorochromic switching for optoelectronic application. Org. Electron. 2017, 51, 295–303. [Google Scholar] [CrossRef]
- Wu, J.; Han, Y.; Liu, J.; Shi, Y.; Zheng, J.; Xu, C. Electrofluorochromic and electrochromic bifunctional polymers with dual-state emission via introducing multiple c—h···π bonds. Org. Electron. 2018, 62, 481–490. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Y.; Wu, J.; Li, M.; Zheng, J.; Xu, C. Yellow electrochromic polymer materials with fine tuning electrofluorescences by adjusting steric hindrance of side chains. RSC Adv. 2017, 7, 25444–25449. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.-H.; Liou, G.-S. High-performance electrofluorochromic devices based on electrochromism and photoluminescence-active novel poly(4-cyanotriphenylamine). Adv. Funct. Mater. 2014, 24, 6422–6429. [Google Scholar] [CrossRef]
- Sun, J.; Liang, Z. Swift electrofluorochromism of donor-acceptor conjugated polytriphenylamines. ACS Appl. Mater Interfaces 2016, 8, 18301–18308. [Google Scholar] [CrossRef]
- Santra, D.C.; Nad, S.; Malik, S. Electrochemical polymerization of triphenylamine end-capped dendron: Electrochromic and electrofluorochromic switching behaviors. J. Electroanal. Chem. 2018, 823, 203–212. [Google Scholar] [CrossRef]
- Jin, L.; Fang, Y.; Hu, P.; Zhai, Y.; Wang, E.; Dong, S. Polyoxometalate-based inorganic-organic hybrid film structure with reversible electroswitchable fluorescence property. Chem. Commun. (Camb.) 2012, 48, 2101–2103. [Google Scholar] [CrossRef]
- Jin, L.; Fang, Y.; Shang, L.; Liu, Y.; Li, J.; Wang, L.; Hu, P.; Dong, S. Gold nanocluster-based electrochemically controlled fluorescence switch surface with prussian blue as the electrical signal receptor. Chem. Commun. (Camb.) 2013, 49, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Bi, L.; Fu, Y.; Wang, N.; Liu, S.; Tang, Z. Multistate electrically controlled photoluminescence switching. Chem. Sci. 2013, 4, 4371. [Google Scholar] [CrossRef]
- Xu, L.; Wang, B.; Gao, W.; Wu, L.; Bi, L. Study on effects of tungstophosphate structures on electrochemically induced luminescence switching behaviors of the composite films consisting of tris(1,10-phenanthroline) ruthenium. J. Mater. Chem. C 2015, 3, 1732–1737. [Google Scholar] [CrossRef]
- Gao, W.; Zheng, D.; Dong, Z.; Wu, L.; Bi, L. Preparation of green luminescence composite film and study of electrofluorochromic performance. J. Electroanal. Chem. 2015, 756, 30–35. [Google Scholar] [CrossRef]
- Jin, L.; Fang, Y.; Wen, D.; Wang, L.; Wang, E.; Dong, S. Reversibly electroswitched quantum dot luminescence in aqueous solution. ACS Nano 2011, 5, 5249–5253. [Google Scholar] [CrossRef]
- Jin, L.; Shang, L.; Zhai, J.; Li, J.; Dong, S. Fluorescence spectroelectrochemistry of multilayer film assembled cdte quantum dots controlled by applied potential in aqueous solution. J. Phys. Chem. C 2010, 114, 803–807. [Google Scholar] [CrossRef]
Neutral State | Oxidised State | Ref. | |||||
---|---|---|---|---|---|---|---|
λabs (nm) | λem (nm) | Φ | Emission Colour | Changes/Effects on Emission | Contrast Ratio IOFF/ON | ||
M1 | 382 | 385, 405, 425 | 0.0035 | Blue | Enhanced; Φ = 0.059 | 1.3 | [16] |
M2 | ca. 490, 525 | 533, 577, 625 | 0.0039 | Red | Enhanced | - | [17] |
M3 | 342, 590, 739 | - | - | - | Emission Turn-on at λ = 610 nm | - | [18] |
M4 | 334, 518 | 385, 558 | 0.32 | Yellow | Quenched | - | [20] |
M5a | 255, 342, 520 | 418 | 0.004 | Blue | Quenched | - | [21] |
M5b | 257, 326, 511 | 415 | 0.001 | Blue | Emission Turn on at λ = 550 nm | - | [21] |
M5c | 258, 337, 511 | 417 | 0.008 | Blue | Emission Turn on at λ = 558 nm | - | [21] |
M5d | 345, 507 | 426 | 0.06 | Blue | - | - | [21] |
M6 | 754 | 803 | 0.43 | - | Emission quenched, then turn on at λ = 1185 nm (Φ = 0.00048) | - | [22] |
Neutral State | Oxidised State | Ref. | ||||||
---|---|---|---|---|---|---|---|---|
λabs (nm) | λem (nm) | Φ | Emission Colour | Changes/Effects on Emission | Contrast Ratio IOFF/ON | Response Time, t (s) | ||
M7 | 795 | 822 | - | NIR | Quenched | 1.5 | - | [26] |
M8a | 675 | 711 | 0.13 | NIR | Quenched | 86.4 | - | [27] |
M8b | 694 | 741 | 0.36 | NIR | Quenched | 76.3 | - | [27] |
M8c | 762 | 803 | 0.01 | NIR | Partially Quenched | 40.2 | - | [27] |
M9a | 687 | 721 | 0.28 | NIR | Partially Quenched | 25.5 | - | [27] |
M9b | 696 | 748 | 0.24 | NIR | Partially Quenched | 55.2 | - | [27] |
M10a | 566, 562 | 593 | 1.00 | - | Quenched | - | - | [28] |
M10b | 580, 582 | 614 | 0.89 | - | Quenched | - | - | [28] |
M10c | 578 | 600 | 0.76 | - | Quenched | - | - | [28] |
M11a | 470 | 680 | 0.04 | Purple | Emission colour changes from purple to blue | - | - | [29] |
M11b | 500 | 702 | <0.01 | Grey-green | Emission colour changes from grey-green to green | - | - | [29] |
M12a | 353 | 531 | 0.06 | Green | Quenched | - | - | [31] |
M12b | 355 | 532 | 0.04 | Green | Quenched | - | - | [31] |
M12c | 311 | 447 | 0.09 | Blue | Quenched | - | - | [31] |
M12d | 283 | 384 | 0.06 | Blue | Partially Quenched | - | - | [31] |
M12e | 301 | 382 | 0.03 | Blue | Partially Quenched | - | - | [31] |
M12f | 357 | 418 | 0.37 | Blue | Quenched | - | - | [31] |
M13 | 346 | 424 | 0.39 | Blue | Stepwise Quenching (Off-On-Off) | 5 | - | [32] |
M14a | 415 | 474, 496 | 0.71 | - | Emergence of electro-chemiluminescent | - | - | [33] |
M14b | 447 | 546 | 0.67 | - | Emergence of electro-chemiluminescent | - | - | [33] |
M15 | 360 | 388 | 0.40 | - | Emergence of electro-chemiluminescent | - | - | [33] |
M16 | Ca. 420 | 446 | 0.30 | Blue | Stepwise Quenching | - | - | [34] |
M17a | 432 ^ | 640 ^ | 0.03 ^ | Red | Quenched | - | - | [35] |
M17b | 432 ^ | 640 ^ | 0.075 ^ | Red | Quenched | - | - | [35] |
M18a | 430 | 530 | 0.673 | Green | Quenched | 66–79 | 3.1 (on) 24.2 (off) | [36] |
M18b | 430 | 530 | 0.60 | Green | Change to red | 76.4 | 3.6 (on) 3.5 (off) | [36] |
M19a | 390 | Ca. 455 | 0.92 | Blue | Quenched | - | - | [38] |
M19b | 390 | Ca. 455 | 0.87 | Blue | Quenched | - | - | [38] |
M19c | 395 | 461 | 0.79 | Blue | Quenched | - | - | [38] |
M20a | 510 | 429 | - | Blue | Partially Quenched | - | 9.5 | [39] |
M20b | 530 | 463 | - | Brilliant Blue | Partially Quenched | - | 18.4 | [39] |
M20d | 592 | 547 | - | Yellow | Partially Quenched | - | 24.0 | [39] |
Neutral State | Oxidised State | Ref. | |||||
---|---|---|---|---|---|---|---|
λabs (nm) | λem (nm) | Φ | Emission Colour | Changes/Effects on Emission | Contrast Ratio IOFF/ON | ||
C1 | 453 | 610 | - | Deep Red | Enhances on Reduction ^ | - | [41] |
C2a | 478 | 655 | 0.03 | Deep Red | Quenched | - | [42] |
C2b | 505 | 720 | 0.015 | NIR | Quenched | - | [42] |
C2c | 528 | 675 | 0.007 | NIR | Quenched | - | [42] |
C3a | - | Ca. 540 | - | Green | Quenched on Reduction | - | [43] |
C3b | - | Ca. 590 | - | Orange | Green on Reduction | - | [43] |
C3c | - | Ca. 560 | - | Yellow | Orange on Reduction | - | [43] |
C3d | - | Ca. 600 | - | Red | No Change | - | [43] |
C4a | Ca. 290, 330, 425 | n.d. | <0.001 | - | - | - | [44] |
C4b | Ca. 290, 325, 425 | 720 | 0.018 | - | - | - | [44] |
C4c | Ca. 260, 325, 425 | 580 | <0.001 | Non Emissive | Turn on Red PL at cathode | 26 | [44] |
C4d | Ca. 360 | 640 | 0.036 | - | - | - | [44] |
C5a | Ca. 260, 400 | 635 | <0.001 | - | Turn on Red PL at cathode | - | [44] |
C5b | Ca. 260, 375 | 650 | 0.019 | - | - | - | [44] |
C6a | Ca. 250, 295, 360, 470 | 725 | 0.005 | - | Blue-shift and turn on red PL at cathode | - | [44] |
C6b | Ca. 250, 290, 325, 430, 500 | 655 | 0.075 | - | - | - | [44] |
C7a | - | 550, 600 | 0.08 | Yellow | Red at anode, green at cathode | - | [45] |
C7b | - | 472, 510, 580 | 0.35 | Yellow | Teal at anode, Orange at cathode | - | [45] |
C7c | - | 472, 510, 630 | 0.13 | Red | Blue at anode, Red at Cathode | - | [45] |
C7d | - | 472, 510, 550 | 0.37 | Green | Darker green at anode, Green at cathode | - | [45] |
C7e | - | 520, 580 | 0.20 | Yellow | Yellow at anode, Orange at cathode | - | [45] |
C7f | - | 580, 472, 479 | 0.22 | Yellow | Blue at anode, Orange at cathode | - | [45] |
C8a | Ca. 300 | 591 | 0.19 | Orange | Orange at anode, Green at cathode | - | [46] |
C8b | Ca. 300 | 551 | 0.16 | - | - | - | [46] |
C8c | Ca. 300 | 493, 522 | 0.22 | - | - | - | [46] |
C8d | Ca. 300 | 493, 522 | 0.34 | - | - | - | [46] |
Neutral State | Oxidised State | Ref. | ||||||
---|---|---|---|---|---|---|---|---|
λabs (nm) | λem (nm) | Φ | Emission Colour | Changes/Effects on Emission | Contrast Ratio IOFF/ON | Response Time, t (s) | ||
P1a | Ca. 420 | Ca. 450 | 0.56 | Blue | Quenched | - | - | [47] |
P1b | Ca. 420 | Ca. 450 | 0.63 | Blue | Quenched | - | - | [47] |
P2 | 369 | 540* | - | Yellowish Green | Quenched | - | <10 s | [48] |
P3 | 460 | 630 | - | Red | Partially Quenched | - | - | [49] |
P4a | 367/366 * | 581 | 0.0041 | - | - | - | - | [50] |
P4b | 367/365 * | 560 | 0.0037 | - | - | - | - | [50] |
P4c | 358/359 * | 501 | 0.0068 | - | - | - | - | [50] |
P4d | 361/364 * | 525 | 0.0059 | - | - | - | - | [50] |
P4e | 334/331 * | 441 | 0.471 | Blue | Quenched | 12.7 | - | [50] |
P5a | 365/350 * | 448 | 0.092/0.078 * | - | - | - | - | [51] |
P5b | 355/359 * | 452 | 0.257/0.191 * | - | - | - | - | [51] |
P5c | 357/359 * | 463 | 0.329/0.234 * | - | - | - | - | [51] |
P5d | 355/364 * | 454 | 0.341/0.256 * | Blue-green | Quenched | 221.4 | [51] | |
P5e | 366/353 * | 492 | 0.02/0.019 * | - | - | - | - | [51] |
P6 | 318, 389/320, 375 * | 442 | 0.502 | Blue | Quenched | 152 | - | [52] |
P7a | 309/312 * | 488/474 * | 0.262/0.321 * | Cyan | Quenched | 234 | - | [53] |
P7b | 332/336 * | 486/478 * | 0.04/0.057 * | Cyan | - | - | - | [53] |
P7c | 338/334 * | 485/482 * | 0.022/0.027 * | Cyan | - | - | - | [53] |
P8a | 319/318 * | 490 * | 0.009/0.073 * | Brilliant Blue | Quenched | 206 | 3.1 (off) 1.1 (on) | [54] |
P8b | 315/314 * | 514 | 0.017/0.691 * | Green-Yellow | Quenched | 417 | 6.7 (off) 1.2 (on) | [55] |
P9a | 310/315 * | 492/470 * | 0.14/0.46 * | Blue | Quenched | 98 | 8.6 | [56] |
P9b | 339/343 * | 493/510 * | 0.03/0.16 * | Green | Quenched | 64 | 7.1 | [56] |
P9c | 347/353 * | 498/554 * | 0.008/0.05 * | Yellow | Quenched | 48 | 6.5 | [56] |
P10a | 322/335 * | 476/475 * | 0.573 | Violet | Quenched | - | - | [57] |
P10b | 327/340 * | 479/478 * | 0.027 | Violet | Quenched | - | - | [57] |
P10c | 323/320 * | 475/479 * | 0.39 | - | - | - | - | [57] |
P10d | 342/352 * | 478/473 * | 0.02 | - | - | - | - | [57] |
P11 | 316 * | 435 * | - | Blue | Quenched | 151.9 | - | [58] |
P12a | 314/316 * | 454/427 * | 0.043/0.104 * | - | Quenched | 92 | - | [59] |
P12b | 307/312 * | 456/429 * | 0.026/0.061 * | - | - | - | - | [59] |
P13 | - | 450 | - | - | Quenched | 6.67 | 11.2 (off) 5.2 (on) | [60] |
P14 | 330 | 518 | - | Green | Quenched | 33.3 | 9.4 (off) 10.8 (on) | [63] |
P15 | - | 406/486 * | - | - | Quenched | 4.6 | 10.5 (off) 9.2 (on) | [61] |
P16 | Ca. 460 | 484 * | - | Blue | Partially Quenched | 2.5 | 4.2 (off) 2.4 (on) | [62] |
Neutral State | Oxidised State | Ref. | ||||||
---|---|---|---|---|---|---|---|---|
λabs (nm) | λem (nm) | Φ | Emission Colour | Changes/Effects on Emission | Contrast Ratio IOFF/ON | Response Time, t (s) | ||
P17 | 425 | 535 | 0.0032; 0.0030 | Green | Quenched; Φ = 0.000035; 0.000032 | 100 | - | [67] |
P18a | 315, 450 | 580 | - | Yellow | Quenched. | 19.2 | - | [69] |
P18b | 450/465 * | 580/580 * | - | Yellow | Partially Quenched | 5 | - | [68] |
P19a | 346/340 * | 455/450 * | 0.261 | Blue | Quenched | - | 3.39 (off) 2.88 (on) | [70] |
P19b | 375/378 * | 520/491 * | 0.171 | Blue | - | - | 2.18 (off) 2.08 (on) | [70] |
P19c | 356/346 * | 505/493 * | 0.042 | Blue | - | - | 3.56 (off) 3.80 (on) | [70] |
P20a | 366/365 * | 415/423 * | 0.87/0.77 * | Blue | Partially Quenched | - | - | [71] |
P20b | 360/358 * | 432/443 * | 0.82/0.73 * | Sky Blue | Quenched | 16.3 | 3 | [71] |
P20c | 386/376 * | 434/435 * | 0.65/0.43 * | Blue | Quenched | - | - | [71] |
P20d | 378/358 * | 432, 565/565 * | 0.22/0.17 * | Yellow | Quenched | 21.4 | 4.22 (off) 4.33 (on) | [72] |
P20e | Ca. 375 | Ca. 565 | 0.23 | Greenish Yellow | Quenched | 23.8 | 4.54 (off) 5.62 (on) | [73] |
P20f | - | Ca. 455 | 0.74 | Blue | Quenched | 21.9 | 4.46 (off) 4.33 (on) | [73] |
P21 | Ca. 425 | Ca. 525 | 0.038 | Yellow | Increased slightly then quenched (Φ = 0.0021) | 18 | - | [74] |
P22 | 407/417 * | 540 | - | Yellow-green | Quenched | - | - | [75] |
P23a | 570/589 * | 602/621 * | <0.01 | - | - | - | - | [76] |
P23b | 402/420 * | 483/533 * | 0.045 | Yellow | Quenched | - | - | [76] |
P23c | 430/445 * | 492/573 * | <0.01 | - | - | - | - | [76] |
P24a | 441/452 * | 533/547 * | - | Green | Quenched | - | - | [77] |
P24b | 480/522 * | 617/636 * | - | Red | Quenched | - | - | [77] |
P25a | 416 | 545 | - | Yellow | Quenched | - | 2.9 (off) 2.7 (on) | [78] |
P25b | 412 | 539 | - | Yellow | Quenched | - | 2.8 (off) 2.8 (on) | [78] |
P25c | 418 | 561 | - | Orange | Quenched | - | 2.5 (off) 3.0 (on) | [78] |
P25d | 425 | 554 | - | Orange | Quenched | - | 3.0 (off) 2.7 (on) | [78] |
P26 | 364/362 * | 473/470 * | 0.117/0.219 * | Bluish Green | Quenched | 242 | <0.4 | [79] |
P27a | 389 * | 521 * | 0.28 | Green | Quenched | 21.8 | 0.19 | [80] |
P27b | Ca. 340 *, 425 * | Ca. 625 * | 0.021 | Red | Quenched | 11.3 | 0.92 | [80] |
P28a | 356 * | 473 * | - | Blue | Quenched | 64 | - | [81] |
P28b | 426 * | 582 * | - | Yellow | Quenched | 179 | - | [81] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chua, M.H.; Zhu, Q.; Shah, K.W.; Xu, J. Electroluminochromic Materials: From Molecules to Polymers. Polymers 2019, 11, 98. https://doi.org/10.3390/polym11010098
Chua MH, Zhu Q, Shah KW, Xu J. Electroluminochromic Materials: From Molecules to Polymers. Polymers. 2019; 11(1):98. https://doi.org/10.3390/polym11010098
Chicago/Turabian StyleChua, Ming Hui, Qiang Zhu, Kwok Wei Shah, and Jianwei Xu. 2019. "Electroluminochromic Materials: From Molecules to Polymers" Polymers 11, no. 1: 98. https://doi.org/10.3390/polym11010098
APA StyleChua, M. H., Zhu, Q., Shah, K. W., & Xu, J. (2019). Electroluminochromic Materials: From Molecules to Polymers. Polymers, 11(1), 98. https://doi.org/10.3390/polym11010098