Effect of Polysaccharide Sources on the Physicochemical Properties of Bromelain–Chitosan Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Standard Solution of Bromelain
2.3. Protein Concentration and Enzymatic Activity
2.4. Nanoparticles Production with Different Chitosan Types
2.5. Nanoparticles Characterization
2.5.1. Dynamic Light Scattering (DLS) and Zeta Potential
2.5.2. Nanoparticles Tracking Analysis (NTA)
2.5.3. Encapsulation Parameters and Enzymatic Activity
2.5.4. Scanning Electron Microscopy (SEM)
2.5.5. Fourier Transform Infrared (FTIR)
2.6. Nanoparticles Long-Term Stability
2.7. Texture Analysis
2.8. Statistical Analysis
3. Results and Discussion
Production and Characterization of Nanoparticles
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Teimouri, A.; Azami, S.J.; Keshavarz, H.; Esmaeili, F.; Alimi, R.; Mavi, S.A.; Shojaee, S. Anti-Toxoplasma activity of various molecular weights and concentrations of chitosan nanoparticles on tachyzoites of RH strain. Int. J. Nanomed. 2018, 13, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Syeda, J.T.M.; Wasan, K.M.; Wasan, E.K. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, N.; Ramay, H.R.; Chou, S.-H.; Zhang, M. Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery. Int. J. Nanomed. 2006, 1, 181–187. [Google Scholar] [CrossRef]
- Yassue-Cordeiro, P.H.; Zandonai, C.H.; Genesi, B.P.; Lopes, P.S.; Sanchez-Lopez, E.; Garcia, M.L.; Fernandes-Machado, N.R.C.; Severino, P.; Souto, E.B.; Ferreira da Silva, C. Development of chitosan/silver sulfadiazine/zeolite composite films for wound dressing. Pharmaceutics 2019, in press. [Google Scholar] [CrossRef]
- Debone, H.S.; Lopes, P.S.; Severino, P.; Yoshida, C.M.P.; Souto, E.B.; da Silva, C.F. Chitosan/Copaiba oleoresin films for would dressing application. Int. J. Pharm. 2019, 555, 146–152. [Google Scholar] [CrossRef]
- Vivek, R.; Nipun Babu, V.; Thangam, R.; Subramanian, K.S.; Kannan, S. pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf. B Biointerfaces 2013, 111, 117–123. [Google Scholar] [CrossRef]
- Severino, P.; Chaud, M.; Ferreira Padilha, F.; Santini, A.; Souto, E.B. 33 Properties and Applications of Chitosan and Its Derivatives in the Pharmaceutical and Food Sectors. In Green Polymer Composites Technology; Taylor & Francis Group: Abingdon, UK, 2017. [Google Scholar] [CrossRef]
- Teixeira, M.d.C.; Santini, A.; Souto, E.B. Chapter 8—Delivery of Antimicrobials by Chitosan-Composed Therapeutic Nanostructures. In Nanostructures for Antimicrobial Therapy; Ficai, A., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Hasanifard, M.; Ebrahimi-Hosseinzadeh, B.; Hatamian-Zarmi, A.; Rezayan, A.H.; Esmaeili, M.A. Development of Thiolated Chitosan Nanoparticles Based Mucoadhesive Vaginal Drug Delivery Systems. Polym. Sci. Ser. A 2017, 59, 858–865. [Google Scholar] [CrossRef] [Green Version]
- Severino, P.; da Silva, C.F.; da Silva, M.A.; Santana, M.H.A.; Souto, E.B. Chitosan Cross-Linked Pentasodium Tripolyphosphate Micro/Nanoparticles Produced by Ionotropic Gelation. Sugar Tech. 2016, 18, 49–54. [Google Scholar] [CrossRef]
- Barbosa, G.P.; Debone, H.S.; Severino, P.; Souto, E.B.; da Silva, C.F. Design and characterization of chitosan/zeolite composite films—Effect of zeolite type and zeolite dose on the film properties. Mater. Sci. Eng. C 2016, 60, 246–254. [Google Scholar] [CrossRef]
- Wang, J.J.; Zeng, Z.W.; Xiao, R.Z.; Xie, T.; Zhou, G.L.; Zhan, X.R.; Wang, S.L. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomed. 2011, 6, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Jose, S.; Prema, M.T.; Chacko, A.J.; Thomas, A.C.; Souto, E.B. Colon specific chitosan microspheres for chronotherapy of chronic stable angina. Colloids Surf. B Biointerfaces 2011, 83, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; de Oliveira, G.G.G.; Ferraz, H.G.; Souto, E.B.; Santana, M.H.A. Preparation of gastro-resistant pellets containing chitosan microspheres for improvement of oral didanosine bioavailability. J. Pharm. Anal. 2012, 2, 188–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severino, P.; Da Silva, C.F.; Dalla Costa, T.C.T.; Silva, H.; Chaud, M.V.; Santana, M.H.A.; Souto, E.B. In Vivo Absorption of Didanosine Formulated in Pellets Composed of Chitosan Microspheres. In Vivo 2014, 28, 1045–1050. [Google Scholar] [PubMed]
- Da Silva, C.F.; Severino, P.; Martins, F.; Santana, M.H.A.; Souto, E.B. Didanosine-loaded chitosan microspheres optimized by surface-response methodology: A modified “Maximum Likelihood Classification” approach formulation for reverse transcriptase inhibitors. Biomed. Pharmacother. 2015, 70, 46–52. [Google Scholar] [CrossRef]
- Jose, S.; Fangueiro, J.F.; Smitha, J.; Cinu, T.A.; Chacko, A.J.; Premaletha, K.; Souto, E.B. Cross-linked chitosan microspheres for oral delivery of insulin: Taguchi design and in vivo testing. Colloids Surf. B Biointerfaces 2012, 92, 175–179. [Google Scholar] [CrossRef]
- Jose, S.; Fangueiro, J.F.; Smitha, J.; Cinu, T.A.; Chacko, A.J.; Premaletha, K.; Souto, E.B. Predictive modeling of insulin release profile from cross-linked chitosan microspheres. Eur. J. Med. Chem. 2013, 60, 249–253. [Google Scholar] [CrossRef]
- Rathnavelu, V.; Alitheen, N.B.; Sohila, S.; Kanagesan, S.; Ramesh, R. Potential role of bromelain in clinical and therapeutic applications. Biomed. Rep. 2016, 5, 283–288. [Google Scholar] [CrossRef]
- De Lencastre Novaes, L.C.; Jozala, A.F.; Lopes, A.M.; de Carvalho Santos-Ebinuma, V.; Mazzola, P.G.; Pessoa Junior, A. Stability, purification, and applications of bromelain: A review. Biotechnol. Prog. 2016, 32, 5–13. [Google Scholar] [CrossRef]
- Taussig, S.J.; Batkin, S. Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. An update. J. Ethnopharmacol. 1988, 22, 191–203. [Google Scholar] [CrossRef]
- Romano, B.; Fasolino, I.; Pagano, E.; Capasso, R.; Pace, S.; De Rosa, G.; Milic, N.; Orlando, P.; Izzo, A.A.; Borrelli, F. The chemopreventive action of bromelain, from pineapple stem (Ananas comosus L.), on colon carcinogenesis is related to antiproliferative and proapoptotic effects. Mol. Nutr. Food Res. 2014, 58, 457–465. [Google Scholar] [CrossRef]
- Muhammad, Z.A.; Ahmad, T. Therapeutic uses of pineapple-extracted bromelain in surgical care—A review. JPMA: J. Pak. Med. Assoc. 2017, 67, 121–125. [Google Scholar]
- Ataide, J.A.; Cefali, L.C.; Croisfelt, F.M.; Shimojo, A.A.M.; Oliveira-Nascimento, L.; Mazzola, P.G. Natural actives for wound healing: A review. Phytother. Res. 2018, 32, 11. [Google Scholar] [CrossRef]
- Spir, L.G.; Ataide, J.A.; Novaes, L.C.D.L.; Gurpilhares, D.D.B.; Moriel, P.; Silveira, E.; Pessoa, A.; Tambourgi, E.B.; Mazzola, P.G. Application of an aqueous two-phase micellar system to extract bromelain from pineapple (Ananas comosus) peel waste and analysis of bromelain stability in cosmetic formulations. Biotechnol. Prog. 2015, 31, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, C.B.; Ataide, J.A.; Cefali, L.C.; Novaes, L.C.d.L.; Moriel, P.; Silveira, E.; Tambourgi, E.B.; Mazzola, P.G. Evaluation of the enzymatic activity and stability of commercial bromelain incorporated in topical formulations. Int. J. Cosmet. Sci. 2016, 38, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Pereira, I.R.A.; Bresolin, I.T.L.; Mazzola, P.G.; Tambourgi, E.B. Incorporation of bromelain into dermatological bases: Accelerated stability studies. J. Chem. Chem. Eng. 2014, 8, 270–277. [Google Scholar]
- Ataide, J.A.; Gérios, E.F.; Mazzola, P.G.; Souto, E.B. Bromelain-loaded nanoparticles: A comprehensive review of the state of the art. Adv. Colloid Interface Sci. 2018, 254, 48–55. [Google Scholar] [CrossRef]
- Wei, B.; He, L.; Wang, X.; Yan, G.Q.; Wang, J.; Tang, R. Bromelain-decorated hybrid nanoparticles based on lactobionic acid-conjugated chitosan for in vitro anti-tumor study. J. Biomater. Appl. 2017, 32, 206–218. [Google Scholar] [CrossRef]
- Wang, X.; He, L.; Wei, B.; Yan, G.; Wang, J.; Tang, R. Bromelain-immobilized and lactobionic acid-modified chitosan nanoparticles for enhanced drug penetration in tumor tissues. Int. J. Biol. Macromol. 2018, 115, 129–142. [Google Scholar] [CrossRef]
- Tan, Y.L.; Liu, C.G.; Yu, L.J.; Chen, X.G. Effect of linoleic-acid modified carboxymethyl chitosan on bromelain immobilization onto self-assembled nanoparticles. Front. Mater. Sci. China 2008, 2, 209–213. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Sarath, G.; De La Motte, R.S.; Wagner, F.W. Protease assay methods. In Proteolytic Enzymes: A Practical Approach; Beynon, R.J., Bond, J.S., Eds.; Oxford University Press: Oxford, UK, 1989; pp. 25–54. [Google Scholar]
- Coelho, D.F.; Saturnino, T.P.; Fernandes, F.F.; Mazzola, P.G.; Silveira, E.; Tambourgi, E.B. Azocasein Substrate for Determination of Proteolytic Activity: Reexamining a Traditional Method Using Bromelain Samples. BioMed Res. Int. 2016, 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, A.; Zabeo, A.; Semenzin, E.; Hristozov, D.; Marcomini, A. Extrapolated long-term stability of titanium dioxide nanoparticles and multi-walled carbon nanotubes in artificial freshwater. J. Nanopart. Res. 2016, 18, 113. [Google Scholar] [CrossRef]
- Hebbar, U.H.; Sumana, B.; Hemavathi, A.B.; Raghavarao, K.S.M.S. Separation and Purification of Bromelain by Reverse Micellar Extraction Coupled Ultrafiltration and Comparative Studies with Other Methods. Food Bioprocess Technol. 2012, 5, 1010–1018. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Rampino, A.; Borgogna, M.; Blasi, P.; Bellich, B.; Cesàro, A. Chitosan nanoparticles: Preparation, size evolution and stability. Int. J. Pharm. 2013, 455, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Jose, S.; Ansa, C.R.; Cinu, T.A.; Chacko, A.J.; Aleykutty, N.A.; Ferreira, S.V.; Souto, E.B. Thermo-sensitive gels containing lorazepam microspheres for intranasal brain targeting. Int. J. Pharm. 2013, 441, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1638–1649. [Google Scholar] [CrossRef]
- Santos, J.E.d.; Soares, J.d.P.; Dockal, E.R.; Campana Filho, S.P.; Cavalheiro, É.T.G. Caracterização de quitosanas comerciais de diferentes origens. Polímeros 2003, 13, 242–249. [Google Scholar] [CrossRef]
- Pereira, A.K.D.S.; Scheidt, G.N.; Santos, L.S.S. Study of the adsorption of methylene blue dye in chitosan microspheres. Period. Tche Quim. 2015, 12, 7. [Google Scholar]
- He, X.; Li, K.; Xing, R.; Liu, S.; Hu, L.; Li, P. The production of fully deacetylated chitosan by compression method. Egypt. J. Aquat. Res. 2016, 42, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Cervera, M.F.; Heinämäki, J.; de la Paz, N.; López, O.; Maunu, S.L.; Virtanen, T.; Hatanpää, T.; Antikainen, O.; Nogueira, A.; Fundora, J.; et al. Effects of Spray Drying on Physicochemical Properties of Chitosan Acid Salts. AAPS PharmSciTech 2011, 12, 637–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devakate, R.V.; Patil, V.V.; Waje, S.S.; Thorat, B.N. Purification and drying of bromelain. Sep. Purif. Technol. 2009, 64, 259–264. [Google Scholar] [CrossRef]
- Soares, P.A.G.; Vaz, A.F.M.; Correia, M.T.S.; Pessoa, A.; Carneiro-da-Cunha, M.G. Purification of bromelain from pineapple wastes by ethanol precipitation. Sep. Purif. Technol. 2012, 98, 389–395. [Google Scholar] [CrossRef]
- Ataide, J.A.; Cefali, L.C.; Rebelo, M.d.A.; Spir, L.G.; Tambourgi, E.B.; Jozala, A.F.; Chaud, M.V.; Silveira, E.; Gu, X.; Mazzola, P.G. Bromelain Loading and Release from a Hydrogel Formulated Using Alginate and Arabic Gum. Planta Med. 2017, 83, 7. [Google Scholar] [CrossRef]
- Ataide, J.A.; de Carvalho, N.M.; Rebelo, M.d.A.; Chaud, M.V.; Grotto, D.; Gerenutti, M.; Rai, M.; Mazzola, P.G.; Jozala, A.F. Bacterial Nanocellulose Loaded with Bromelain: Assessment of Antimicrobial, Antioxidant and Physical-Chemical Properties. Sci. Rep. 2017, 7, 18031. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, W.; Wang, C.; Hu, J.; Fu, S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int. J. Pharm. 2005, 295, 235–245. [Google Scholar] [CrossRef]
- Knaul, J.Z.; Hudson, S.M.; Creber, K.A.M. Improved mechanical properties of chitosan fibers. J. Appl. Polym. Sci. 1999, 72, 1721–1732. [Google Scholar] [CrossRef]
- Antoniou, J.; Liu, F.; Majeed, H.; Qi, J.; Yokoyama, W.; Zhong, F. Physicochemical and morphological properties of size-controlled chitosan–tripolyphosphate nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2015, 465, 137–146. [Google Scholar] [CrossRef]
- Zielinska, A.; Ferreira, N.R.; Durazzo, A.; Lucarini, M.; Cicero, N.; Mamouni, S.E.; Silva, A.M.; Nowak, I.; Santini, A.; Souto, E.B. Development and Optimization of Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental Factorial Design and Dispersion Analysis. Molecules 2019, 24. [Google Scholar] [CrossRef]
- Zielinska, A.; Martins-Gomes, C.; Ferreira, N.R.; Silva, A.M.; Nowak, I.; Souto, E.B. Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer(R). Int. J. Pharm. 2018, 553, 428–440. [Google Scholar] [CrossRef]
- Cevoli, C.; Balestra, F.; Ragni, L.; Fabbri, A. Rheological characterisation of selected food hydrocolloids by traditional and simplified techniques. Food Hydrocoll. 2013, 33, 142–150. [Google Scholar] [CrossRef]
- Pawar, S.; Pande, V. Oleic Acid Coated Gelatin Nanoparticles Impregnated Gel for Sustained Delivery of Zaltoprofen: Formulation and Textural Characterization. Adv. Pharm. Bull. 2015, 5, 537–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Value |
---|---|
Particles refractive index | 1.520 |
Particles absorption | 0.330 |
Medium viscosity | 0.8872 cP |
Medium refractive index | 1.330 |
Measurement temperature | 25 °C |
Cuvette type | Disposable folded capillary cells (DTS1070) |
Scattering angle | 173° |
Laser wavelength | 633 nm |
Sample preparation prior to analysis | none |
NPs | Polydispersity Index | Zeta Potential (mV) | Concentration (×1011 particles/mL) |
---|---|---|---|
LMW | 0.350 ± 0.051 | 30.6 ± 2.7 | 4.7 ± 0.4 |
LAC | 0.541 ± 0.014 | 28.4 ± 2.4 | 14.3 ± 0.8 |
SHR | 0.327 ± 0.006 | 33.2 ± 3.3 | 9.8 ± 0.2 |
LMW-B | 0.358 ± 0.062 | 28.9 ± 1.7 | 6.9 ± 0.3 |
LAC-B | 0.498 ± 0.034 | 26.3 ± 2.5 | 19.9 ± 1.3 |
SHR-B | 0.427 ± 0.018 | 30.0 ± 2.4 | 1.7 ± 0.8 |
Sample | Concentration (U/mL) * | LC% | EE (%) | EA (%) |
---|---|---|---|---|
Bromelain Solution | 20.4 ± 0.1 | - | - | - |
LMW-B | 1.6 ± 0.5 | 15.0 | 89.1 | 91.9 |
LAC-B | 2.8 ± 0.1 | 16.4 | 97.7 | 86.3 |
SHR-B | 4.1 ± 1.3 | 14.1 | 84.1 | 79.8 |
NP | Firmness (g) | Consistency (gs) | Cohesiveness (g) | Viscosity Index (gs) |
---|---|---|---|---|
LMW | 980.6 ± 51.9 | 1629.8 ± 346.6 | −909.4 ± 32.0 | 393.3 ± 386.5 |
LMW-B | 915.9 ± 25.5 | 1626.4 ± 35.7 | −860.8 ± 117.7 | 412.3 ± 29.3 |
LAC | 935.3 ± 16.5 | 1695.1 ± 36.3 | −906.2 ± 88.4 | 546.9 ± 108.5 |
LAC-B | 925.6 ± 32.0 | 1685.1 ± 240.7 | −809.1 ± 69.3 | 637.0 ± 142.7 |
SHR | 873.8 ± 21.0 | 1444.5 ± 34.4 | −851.1 ± 16.5 | 341.0 ± 41.7 |
SHR-B | 909.4 ± 18.3 | 1375.4 ± 122.5 | −802.6 ± 35.8 | 266.4 ± 131.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ataide, J.A.; Gérios, E.F.; Cefali, L.C.; Fernandes, A.R.; Teixeira, M.d.C.; Ferreira, N.R.; Tambourgi, E.B.; Jozala, A.F.; Chaud, M.V.; Oliveira-Nascimento, L.; et al. Effect of Polysaccharide Sources on the Physicochemical Properties of Bromelain–Chitosan Nanoparticles. Polymers 2019, 11, 1681. https://doi.org/10.3390/polym11101681
Ataide JA, Gérios EF, Cefali LC, Fernandes AR, Teixeira MdC, Ferreira NR, Tambourgi EB, Jozala AF, Chaud MV, Oliveira-Nascimento L, et al. Effect of Polysaccharide Sources on the Physicochemical Properties of Bromelain–Chitosan Nanoparticles. Polymers. 2019; 11(10):1681. https://doi.org/10.3390/polym11101681
Chicago/Turabian StyleAtaide, Janaína Artem, Eloah Favero Gérios, Letícia Caramori Cefali, Ana Rita Fernandes, Maria do Céu Teixeira, Nuno R. Ferreira, Elias Basile Tambourgi, Angela Faustino Jozala, Marco Vinicius Chaud, Laura Oliveira-Nascimento, and et al. 2019. "Effect of Polysaccharide Sources on the Physicochemical Properties of Bromelain–Chitosan Nanoparticles" Polymers 11, no. 10: 1681. https://doi.org/10.3390/polym11101681
APA StyleAtaide, J. A., Gérios, E. F., Cefali, L. C., Fernandes, A. R., Teixeira, M. d. C., Ferreira, N. R., Tambourgi, E. B., Jozala, A. F., Chaud, M. V., Oliveira-Nascimento, L., Mazzola, P. G., & Souto, E. B. (2019). Effect of Polysaccharide Sources on the Physicochemical Properties of Bromelain–Chitosan Nanoparticles. Polymers, 11(10), 1681. https://doi.org/10.3390/polym11101681