GC-MS Screening for the Identification of Potential Migrants Present in Polymeric Coatings of Food Cans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Samples and Extraction Procedure
2.3. Equipment
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.2. GC-MS—Screening Analysis
2.3.3. LC-MS/MS—Targeted Analysis
3. Results and Discussion
3.1. FTIR Analysis
3.2. GC-MS Screening
3.3. Targeted Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geueke, B. FPF Dossier: Can Coatings; Food Packaging Forum: Zurich, Switzerland, 2016. [Google Scholar] [CrossRef]
- Alwan, R.M.; Ali, R.A.; Hasan, H.A.; Mohammed, A.; Ali, N.A. Study of new users of internal coating for Food and beverage cans. Int. J. Chem. Stud. 2015, 3, 35–37. [Google Scholar]
- Gallart-Ayala, H.; Moyano, E.; Galceran, M.T. Fast liquid chromatography–tandem mass spectrometry for the analysis of bisphenol A-diglycidyl ether, bisphenol F-diglycidyl ether and their derivatives in canned food and beverages. J. Chromatogr. A 2011, 1218, 1603–1610. [Google Scholar] [CrossRef] [PubMed]
- Paseiro Losada, P.; Simal Lozano, J.; Paz Abuin, S.; López Mahia, P.; Simal Gándara, J. Kinetics of the hydrolysis of bisphenol diglycidyl ether (BADGE) in water-based food simulants. J. Anal. Chem. 1993, 345, 527–532. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No. 10/2011, on Plastic Materials and Articles Intended to Come into Contact with Food. Off. J. Eur. Union 2011, 12, 1–89. Available online: http://data.europa.eu/eli/reg/2011/10/oj (accessed on 5 October 2019).
- European Commission. Commission Regulation (EU) No. 2018/213, on 12 February 2018 on the Use of Bisphenol A in Varnishes and Coatings Intended to Come into Contact with Food. Off. J. Eur. Union 2018, L41, 6–12. Available online: https://eur-lex.europa.eu/eli/reg/2018/213/oj (accessed on 5 October 2019).
- Driffield, M.; Garcia-Lopez, M.; Christy, J.; Lloyd, A.S.; Tarbin, J.A.; Hough, P.; Bradley, E.L.; Oldring, P.K.T. The determination of monomers and oligomers from polyester-based can coatings into foodstuffs over extended storage periods. Food Addit. Contam. Part A 2018, 35, 1200–1213. [Google Scholar] [CrossRef]
- Paseiro-Cerrato, R.; MacMahon, S.; Ridge, C.D.; Noonan, G.O.; Begley, T.H. Identification of unknown compounds from polyester cans coatings that may potentially migrate into food or food simulants. J. Chromatogr. A 2016, 1444, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Paseiro-Cerrato, R.; Noonan, G.O.; Begley, T.H. Evaluation of long-term migration testing from can coatings into food simulants: Polyester coatings. J. Agric. Food Chem. 2016, 64, 2377–2385. [Google Scholar] [CrossRef]
- Lestido Cardama, A.; Rodríguez Bernaldo de Quirós, A.; Sendón, R. Analysis of bisphenol A in beverages and food packaging by high-performance liquid chromatography. Food Nutr. J. 2017, 2017, 4. [Google Scholar] [CrossRef]
- Russo, G.; Barbato, F.; Grumetto, L. Development and validation of a LC-FD method for the simultaneous determination of eight bisphenols in soft drinks. Food Anal. Methods 2016, 9, 2732–2740. [Google Scholar] [CrossRef]
- Sendón García, R.; Paseiro Losada, P.; Pérez Lamela, C. Determination of compounds from epoxy resins in food simulants by HPLC-fluorescence. Chromatographia 2003, 58, 337–342. [Google Scholar] [CrossRef]
- Paseiro-Cerrato, R.; DeVries, J.; Begley, T.H. Evaluation of short-term and long-term migration testing from can coatings into food simulants: Epoxy and acrylic−phenolic coatings. J. Agric. Food Chem. 2017, 65, 2594–2602. [Google Scholar] [CrossRef] [PubMed]
- Galmán Graíño, S.; Sendón, R.; López Hernández, J.; Rodríguez-Bernaldo de Quirós, A. GC-MS Screening Analysis for the Identification of Potential Migrants in Plastic and Paper-Based Candy Wrappers. Polymers 2018, 10, 802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U. S. Environmental Protection Agency. Preliminary Industry Characterization: Metal Can Manufacturing—Surface Coating; U.S. Environmental Protection Agency: Washington, DC, USA, 1998. [Google Scholar]
- García Ibarra, V.; Sendón, R.; Bustos, J.; Paseiro Losada, P.; Rodríguez Bernaldo de Quirós, A. Estimates of dietary exposure of Spanish population to packaging contaminants from cereal based foods contained in plastic materials. Food Chem. Toxicol. 2019, 128, 180–192. [Google Scholar] [CrossRef] [PubMed]
- García Ibarra, V.; Rodríguez Bernaldo de Quirós, A.; Paseiro Losada, P.; Sendón, R. Identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products. Anal. Bioanal. Chem. 2018, 410, 3789–3803. [Google Scholar] [CrossRef]
- Lau, O.W.; Wong, S.K. Contamination in food from packaging material. J. Chromatogr. A 2000, 882, 255–270. [Google Scholar] [CrossRef]
- Rodríguez Bernaldo de Quirós, A.; Lestido Cardama, A.; Sendón, R.; García Ibarra, V. Food Contamination by Packaging: Migration of Chemicals from Food Contact Materials; Walter de Gruyter: Berlin, Germany, 2019; ISBN 9783110644876. [Google Scholar]
- Vápenka, L.; Vavrouš, A.; Votavová, L.; Kejlová, K.; Dobiáš, J.; Sosnovcová, J. Contaminants in the paper-based food packaging materials used in the Czech Republic. J. Food Nutr. Res. 2016, 55, 361–373. [Google Scholar]
- Lago, M.A.; Ackerman, L.K. Identification of print-related contaminants in food packaging. Food Addit. Contam. Part A 2016, 33, 518–529. [Google Scholar] [CrossRef]
- Cherta, L.; Portolés, T.; Pitarch, E.; Beltran, J.; López, F.J.; Calatayud, C.; Company, B.; Hernández, F. Analytical strategy based on the combination of gas chromatography coupled to time-of-flight and hybrid quadrupole time-of-flight mass analyzers for non-target analysis in food packaging. Food Chem. 2015, 188, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Lessmann, F.; Correia-Sá, L.; Calhau, C.; Domingues, V.F.; Weiss, T.; Brüning, T.; Koch, H.M. Exposure to the plasticizer di (2-ethylhexyl) terephthalate (DEHTP) in Portuguese children–Urinary metabolite levels and estimated daily intakes. Environ. Int. 2017, 104, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Kusch, P. The Application of Headspace: Solid-Phase Microextraction (HS-SPME) Coupled with Gas Chromatography/Mass Spectrometry (GC/MS) for the Characterization of Polymers. In Gas Chromatography, Analysis, Methods and Practices; Warren, V., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2017; pp. 69–103. ISBN 978-1-53611-990-9. [Google Scholar]
- Demertzis, P.G.; Franz, R.; Welle, F. The effects of γ-irradiation on compositional changes in plastic packaging films. Packag. Technol. Sci. 1999, 12, 119–130. [Google Scholar] [CrossRef]
- Domeño, C.; Aznar, M.; Nerín, C.; Isella, F.; Fedeli, M.; Bosetti, O. Safety by design of printed multilayer materials intended for food packaging. Food Addit. Contam. Part A 2017, 34, 1239–1250. [Google Scholar] [CrossRef] [PubMed]
- García Ibarra, V.; Rodríguez Bernaldo de Quirós, A.; Paseiro Losada, P.; Sendón, R. Non-target analysis of intentionally and non intentionally added substances from plastic packaging materials and their migration into food simulants. Food Packag. Shelf 2019, 21, 100325. [Google Scholar] [CrossRef]
- Bradley, E.L.; Stratton, J.S.; Leak, J.; Lister, L.; Castle, L. Printing ink compounds in foods: UK survey results. Food Addit. Contam. Part B 2013, 6, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; Onghena, M.; Covaci, A.; Van Hoeck, E.; Van Loco, J.; Vandermarken, T.; Van Langenhove, K.; Demaegdt, H.; Mertens, B.; Vandermeiren, K.; et al. Screening of endocrine activity of compounds migrating from plastic baby bottles using a multi-receptor panel of in vitro bioassays. Toxicol. Vitr. 2016, 37, 121–133. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalo, E.; García-Gómez, D.; Carabias-Martínez, R. A confirmatory method for the determination of phenolic endocrine disruptors in honey using restricted-access material–liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2010, 398, 1239–1247. [Google Scholar] [CrossRef]
- Oscar, N.; Hector, G.A. Fast Liquid Chromatography-Mass Spectrometry Methods in Food and Environmental Analysis; Imperial College Press: London, UK, 2015; ISBN 978-1-78326-493-3. [Google Scholar]
- Kolossa-Gehring, M.; Fiddicke, U.; Leng, G.; Angerer, J.; Wolz, B. New human biomonitoring methods for chemicals of concern—The German approach to enhance relevance. Int. J. Hyg. Environ. Health 2017, 220, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Vera, P.; Canellas, E.; Nerín, C. Identification of non volatile migrant compounds and NIAS in polypropylene films used as food packaging characterized by UPLC-MS/QTOF. Talanta 2018, 188, 750–762. [Google Scholar] [CrossRef]
- Dupáková, Z.; Dobiáš, J.; Votavová, L.; Klaudisová, K.; Voldrich, M. Occurrence of extractable ink residuals in packaging materials used in the Czech Republic. Food Addit. Contam. 2010, 27, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Skjevrak, I.; Brede, C.; Steffensen, I.L.; Mikalsen, A.; Alexander, J.; Fjeldal, P.; Herikstad, H. Non-targeted multi-component analytical surveillance of plastic food contact materials: Identification of substances not included in EU positive lists and their risk assessment. Food Addit. Contam. 2005, 22, 1012–1022. [Google Scholar] [CrossRef]
- Canellas, E.; Vera, P.; Nerín, C. Risk assessment derived from migrants identified in several adhesives commonly used in food contact materials. Food Chem. Toxicol. 2015, 75, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Carter, W.; Lamb, K.; Jupina, M. Tougher Cycloaliphatic Epoxide Resins. U.S. Patent Application 10/575,286, 14 August 2008. [Google Scholar]
- Vera, P.; Aznar, M.; Mercea, P.; Nerín, C. Study of hotmelt adhesives used in food packaging multilayer laminates. Evaluation of the main factors affecting migration to food. J. Mater. Chem. 2011, 21, 420–431. [Google Scholar] [CrossRef]
- Rani, M.; Shim, W.J.; Han, G.M.; Jang, M.; Al-Odaini, N.A.; Song, Y.K.; Hong, S.H. Qualitative analysis of additives in plastic marine debris and its new products. Arch. Environ. Contam. Toxicol. 2015, 69, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Wypych, A. Databook of Plasticizers, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-1-895198-96-6. [Google Scholar]
- Dutra, C.; Pezo, D.; de Alvarenga Freire, M.T.; Nerín, C.; Reyes, F.G.R. Determination of volatile organic compounds in recycled polyethylene terephthalate and high-density polyethylene by headspace solid phase microextraction gas chromatography mass spectrometry to evaluate the efficiency of recycling processes. J. Chromatogr. A 2011, 1218, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Pardo, O.; Yusà, V.; León, N.; Pastor, A. Determination of bisphenol diglycidyl ether residues in canned foods by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2006, 1107, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Sendón García, R.; Paseiro Losada, P. Determination of bisphenol A diglycidyl ether and its hydrolysis and chlorohydroxy derivatives by liquid chromatography–mass spectrometry. J. Chromatogr. A 2004, 1032, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Gallart-Ayala, H.; Moyano, E.; Galceran, M.T. Multiple-stage mass spectrometry analysis of bisphenol A diglycidyl ether, bisphenol F diglycidyl ether and their derivatives. Rapid Commun. Mass Spectrom. 2010, 24, 3469–3477. [Google Scholar] [CrossRef]
- Chang, Y.; Nguyen, C.; Paranjpe, V.R.; Gilliland, F.; Zhang, J.J. Analysis of bisphenol A diglycidyl ether (BADGE) and its hydrolytic metabolites in biological specimens by high-performance liquid chromatography and tandem mass spectrometry. J. Chromatogr. B 2014, 965, 33–38. [Google Scholar] [CrossRef]
- Clemente, I.; Aznar, M.; Nerín, C.; Bosetti, O. Migration from printing inks in multilayer food packaging materials by GC-MS analysis and pattern recognition with chemometrics. Food Addit. Contam. Part. A 2016, 33, 703–714. [Google Scholar] [CrossRef]
Compound | IUPAC Name | Chemical Structure | Formula | CAS N° | Molecular Weight (g/mol) |
---|---|---|---|---|---|
BPA | 2,2-Bis(4-hydroxyphenyl)propane | C15H16O2 | 80-05-7 | 228.29 | |
BPB | 2,2-Bis(4-hydroxyphenyl)butane | C16H18O2 | 77-40-7 | 242.31 | |
BPC | 2,2-Bis(4-hydroxy-3-methylphenyl)propane | C17H20O2 | 79-97-0 | 256.34 | |
BPE | 1,1-Bis(4-hydroxyphenyl)ethane | C14H14O2 | 2081-08-5 | 214.26 | |
BPF | 4.4´-Methylenediphenol | C13H12O2 | 620-92-8 | 200.23 | |
BPG | 2,2-Bis(4-hydroxy-3-isopropylphenyl)propane | C21H28O2 | 127-54-8 | 312.45 | |
BADGE | 2,2-Bis(4-hydroxyphenyl)propane bis(2,3-epoxypropyl)ether | C21H24O4 | 1675-54-3 | 340.41 | |
BADGE.H2O | 3-(4-{2-[4-(2-Oxiranylmethoxy)phenyl]-2-propanyl}phenoxy)-1,2-propanediol | C21H26O5 | 76002-91-0 | 358.43 | |
BADGE.2H2O | 3-(4-{2-[4-(2-Oxiranylmethoxy)phenyl]-2-propanyl}phenoxy)-1,2-propanediol | C21H28O6 | 5581-32-8 | 376.44 | |
BADGE.HCl | 1-Chloro-3-(4-{2-[4-(2-oxiranylmethoxy)phenyl]-2-propanyl}phenoxy)-2-propanol | C21H25ClO4 | 13836-48-1 | 376.87 | |
BADGE.2HCl | 1,1‘-[2,2-Propanediylbis(4,1-phenyleneoxy)]bis(3-chloro-2-propanol) | C21H26Cl2O4 | 4809-35-2 | 413.33 | |
BADGE.H2O.HCl | 3-(4-{2-[4-(3-Chloro-2-hydroxypropoxy)phenyl]-2-propanyl}phenoxy)-1,2-propanediol | C21H27ClO5 | 227947-06-0 | 394.89 | |
CYDBADGE | 2,2,10,10-tetramethyl-4,8,12,16-tetraoxa-1,3,9,11(1,4)-tetrabenzenacyclohexadecaphane-6,14-diol | C36H40O6 | 20583-87-3 | 568.71 |
Coding | Surface/Volume Ratio (dm2/mL)* | Thickness (µm) | Type of Material | |
---|---|---|---|---|
Internal | External | |||
ES | 0.01 | Lid: 205.0 Lateral: 167.5 Base: 177.0 | Lid: Polyvinyl chloride and thermoplastic urethane Lateral: Phenoxy resin Base: Phenoxy resin Seam: PS (PET) | Lid: Phenoxy resin Lateral: Phenoxy resin Base: Phenoxy resin |
TO1 | 0.01 | Lid: 220.5 Lateral: 153.5 Base: 188.0 | Lid: PS (PET) Lateral: - Base: Poly(1,4-cyclohexanedimethyleneterephthalate) Seam: PS (PET) | Lid: Phenoxy resin Lateral: Polyethylenes Base: Phenoxy resin |
TO2 | 0.013 | Lid: 215.5 Lateral: 161.0 Base: 186.0 | Lid: PS (PET) Lateral: PS (PET) Base: Poly(1,4-cyclohexanedimethyleneterephthalate) Seam: PS (PET) | Lid: Phenoxy resin Lateral: Phenoxy resin Base: Phenoxy resin |
AH | 0.009 | Lid: 188.5 Lateral: 161.0 Base: 167.5 | Lid: Epoxy base Lateral: - Base: Solid epoxy resin produced from BPA and epichlorohydrin Seam: PS (PET) | Lid: Phenoxy resin Lateral: PS urethane foam Base: Phenoxy resin |
AL | 0.015 | Lid: 233.0 Base: 155.5 | Lid: Epoxy base Base: Epoxy base | Lid: Phenoxy resin Base: Phenoxy resin |
AA | 0.015 | Lid: 188.5 Base: 150.5 | Lid: terephthalic acid PS with aliphatic diol Base: PS (PET) | Lid: Solid epoxy resin produced from BPA and epichlorohydrin Base: Phenoxy resin |
ME | 0.02 | Lid: 208.5 Base: 158.5 | Lid: Epoxy base Base: Epoxy base | Lid: Phenoxy resin Base: Solid epoxy resin produced from BPA and epichlorohydrin |
SR | 0.02 | Lid: 196.0 Base: 155.0 | Lid: Unsaturated isophthalic PS resin Base: Poly(hexamethylene isophthalate) | Lid: Phenoxy resin Base: Solid epoxy resin produced from BPA and epichlorohydrin |
AN | 0.013 | Lid: 114.0 Lateral: 149.5 Base: 240.5 | Lid: PP-graft-maleic anhydride Lateral: Phenoxy resin Base: Phenoxy resin Seam: PS (PET) | Lid: PS-based thermoplastic urethane elastomer Lateral: PUR/PVC compound Base: Phenoxy resin |
AR | 0.012 | Lid: 119.5 Lateral: 167.5 Base: 173.5 | Lid: PP-graft-maleic anhydride Lateral: - Base: PS (PET) | Lid: PS-based thermoplastic urethane elastomer Lateral: PS urethane acrylate Base: Phenoxy resin |
MA | 0.01 | Lid: 218.0 Lateral: 140.0 Base: 165.5 | Lid: Epoxy base Lateral: - Base: Phenoxy resin Seam: PS (PET) | Lid: Phenoxy resin Lateral: - Base: Phenoxy resin |
MZ | 0.01 | Lid: 179.0 Lateral: 138.5 Base: 162.0 | Lid: Poly(diallyl isophthalate) Lateral: PS (PET) Base: Poly(1,4-cyclohexanedimethyleneterephthalate) Seam: PS (PET) | Lid: Solid epoxy resin produced from BPA and epichlorohydrin Lateral: - Base: Phenoxy resin |
Compound | Retention Time (min) | APCI | Parention | Production | Collision Gas Energy (V) |
---|---|---|---|---|---|
BPF | 4.27 | - | 198.9 | 93.0 | 24 |
105.0 | 23 | ||||
BADGE.2H2O | 4.72 | - | 374.8 | 226.8 | 28 |
300.6 | 16 | ||||
BPE | 5.54 | - | 212.9 | 196.8 | 33 |
197.8 | 20 | ||||
BPA | 6.92 | - | 226.9 | 133.0 | 28 |
211.8 | 20 | ||||
BPB | 9.03 | - | 240.9 | 210.7 | 31 |
211.8 | 20 | ||||
BADGE.H2O | 9.45 | + | 399.9 | 106.9 | 45 |
134.8 | 26 | ||||
BADGE.H2O.HCl | 9.96 | - | 283.0 | 211.0 | 30 |
226.0 | 21 | ||||
BPC | 10.62 | - | 254.9 | 146.9 | 33 |
239.8 | 21 | ||||
BADGE | 14.23 | + | 381.9 | 134.9 | 31 |
190.8 | 25 | ||||
BADGE.HCl | 14.50 | + | 417.9 | 106.9 | 43 |
134.9 | 28 | ||||
BADGE.2HCl | 14.77 | + | 382.2 | 191.1 | 16 |
135.2 | 26 | ||||
BPG | 16.90 | - | 311.0 | 174.9 | 33 |
294.9 | 37 | ||||
CYDBADGE | 18.74, 18.99 | + | 569.0 | 134.8 | 29 |
106.9 | 39 |
TR (min) | CAS N° | Compound | m/z | SI | RSI | Sample | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AA | AH | AL | AN | AR | ES | MA | ME | MZ | SR | TO1 | TO2 | ||||||
8.50 | 104-76-7 | 1-hexanol-2-ethyl | 57, 41 | 893 | 953 | X | X | ||||||||||
10.19 | 78-59-1 | Isophorone | 82, 138 | 935 | 936 | X | X | ||||||||||
12.26 | 1014-60-4 | 1,3-di-tert-butylbenzene | 57, 175 | 814 | 837 | X | X | X | X | X | X | X | X | X | X | X | X |
14.02 | 98-86-2 | Acetophenone | 105, 120 | 706 | 946 | X | |||||||||||
14.19 | 98-73-7 | 4-tert-Butylbenzoic acid | 135, 163 | 811 | 876 | X | |||||||||||
15.50 | 719-22-2 | 2,6-Di-tert-butyl-1,4-benzoquinone* | 177, 220 | 709 | 759 | X | |||||||||||
15.63 | 2607-52-5 | 2,6-Di-tert-butyl-4-methylene-2,5-cyclohexadienone | 161, 203 | 866 | 889 | X | X | ||||||||||
16.06 | 128-37-0 | Butylated hydroxytoluene* | 205, 220 | 908 | 920 | X | |||||||||||
16.09 | 96-76-4 | 2,4-Di-tert-butylphenol * | 191, 206 | 894 | 924 | X | X | X | X | X | X | X | X | X | X | X | X |
16.85 | 143-07-7 | Dodecanoic acid | 60, 73 | 823 | 890 | X | |||||||||||
17.84 | 119-61-9 | Benzophenone* | 77, 105 | 895 | 960 | X | X | ||||||||||
18.37 | 24157-81-1 | 2,6-Diisopropylnaphthalene | 155, 197 | 724 | 869 | X | |||||||||||
18.51 | 84852-15-3 | Nonylphenol* | 121, 163 | 700 | 878 | X | |||||||||||
18.91 | 4237-44-9 | 2-(1-Phenylethyl) phenol | 183, 198 | 807 | 963 | X | |||||||||||
19.66 | 26896-48-0 | Tricyclodecanedimethanol | 79, 91 | 824 | 851 | X | |||||||||||
20.52 | 84-69-5 | DIBP* | 149, 223 | 802 | 888 | X | X | X | X | X | X | X | X | X | X | X | X |
21.04 | 82304-66-3 | 7,9-Di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione | 175, 205 | 802 | 870 | X | X | X | X | X | X | X | X | X | X | X | X |
21.24 | 112-39-0 | Methyl hexadecanoate* | 74, 87 | 733 | 827 | X | X | ||||||||||
21.59 | 84-74-2 | DBP* | 149, 150 | 718 | 888 | X | |||||||||||
21.65 | 57-10-3 | Palmitic acid | 73, 129 | 893 | 907 | X | X | X | X | X | X | X | X | X | X | X | |
21.98 | 628-97-7 | Ethyl palmitate | 88, 101 | 798 | 829 | X | X | X | X | X | |||||||
22.38 | 91-76-9 | Benzoguanamine* | 103, 187 | 916 | 940 | X | X | X | |||||||||
23.11 | 112-62-9 | Methyl oleate | 55, 69 | 874 | 894 | X | X | X | X | X | |||||||
23.50 | 112-80-1 | Oleic acid | 73, 129 | 807 | 893 | X | |||||||||||
23.75 | 57-11-4 | Stearic Acid | 43, 73 | 853 | 898 | X | X | X | X | X | X | X | X | ||||
23.93 | 77-94-1 | Tributyl citrate | 129, 185 | 733 | 811 | X | |||||||||||
23.97 | 111-06-8 | Butyl Palmitate | 56, 257 | 718 | 751 | X | |||||||||||
24.36 | 141-02-6 | Bis(2-ethylhexyl) fumarate (DEHF) | 70, 112 | 834 | 888 | X | |||||||||||
24.56 | 77-90-7 | ATBC* | 129, 185 | 782 | 891 | X | X | X | |||||||||
24.91 | 13601-88-2 | Dehydroabietal | 241, 269 | 796 | 919 | X | |||||||||||
25.51 | 1235-74-1 | Methyl Dehydroabietate | 299, 239 | 739 | 828 | X | X | X | X | X | |||||||
25.60 | 17611-16-4 | (13β)-Abiet-8-en-18-oic acid | 243, 289 | 734 | 743 | X | |||||||||||
25.89 | 123-95-5 | Butyl stearate | 56, 285 | 800 | 826 | X | X | X | |||||||||
25.90 | 103-23-1 | DEHA* | 112, 129 | 707 | 848 | X | X | X | |||||||||
25.99 | 127-25-3 | Methyl Abietate | 121, 256 | 886 | 925 | X | |||||||||||
26.21 | 1241-94-7 | 2-Ethylhexyl diphenyl phosphate | 251, 362 | 767 | 857 | X | |||||||||||
26.43 | 1740-19-8 | Dehydroabietic acid | 239, 285 | 712 | 855 | X | |||||||||||
26.66 | 2128-93-0 | 4-Phenylbenzophenone | 152, 181 | 700 | 808 | X | |||||||||||
27.06 | 84-61-7 | DCHP* | 149, 167 | 888 | 910 | X | |||||||||||
27.18 | 117-81-7 | DEHP* | 149, 167 | 942 | 942 | X | X | X | X | X | X | X | X | X | X | ||
27.19 | 791-28-6 | Triphenylphosphine oxide | 199, 277 | 831 | 864 | X | X | ||||||||||
28.94 | 6422-86-2 | DEHT* | 112, 261 | 704 | 858 | X | |||||||||||
29.36 | 122-62-3 | Bis(2-ethylhexyl) sebacate | 112, 185 | 781 | 837 | X | |||||||||||
29.50 | 111-02-4 | Squalene* | 69, 81 | 949 | 949 | X | X | X | X | X | X | X | X | X | X | X | X |
30.43 | 538-23-8 | Glycerol tricaprylate* | 57, 127 | 811 | 858 | X | X | X |
Compound | Samples | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AA | AH | AL | AN | AR | ES | MA | ME | MZ | SR | TO1 | TO2 | |
BPF | ||||||||||||
BADGE.2H2O | X | X | X | X | X | X | X | X | X | X | X | |
BPE | ||||||||||||
BPA | X | X | X | X | ||||||||
BPB | ||||||||||||
BADGE.H2O | X | X | X | X | X | X | X | X | X | X | X | |
BADGE.H2O.HCl | X | X | X | |||||||||
BPC | ||||||||||||
BADGE | X | X | X | X | X | X | X | X | X | X | ||
BADGE.HCl | X | X | X | X | ||||||||
BADGE.2HCl | ||||||||||||
BPG | ||||||||||||
CYDBADGE | X | X | X | X | X | X | X | X | X | X | X | X |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lestido Cardama, A.; Sendón, R.; Bustos, J.; Santillana, M.I.; Paseiro Losada, P.; Rodríguez Bernaldo de Quirós, A. GC-MS Screening for the Identification of Potential Migrants Present in Polymeric Coatings of Food Cans. Polymers 2019, 11, 2086. https://doi.org/10.3390/polym11122086
Lestido Cardama A, Sendón R, Bustos J, Santillana MI, Paseiro Losada P, Rodríguez Bernaldo de Quirós A. GC-MS Screening for the Identification of Potential Migrants Present in Polymeric Coatings of Food Cans. Polymers. 2019; 11(12):2086. https://doi.org/10.3390/polym11122086
Chicago/Turabian StyleLestido Cardama, Antía, Raquel Sendón, Juana Bustos, M. Isabel Santillana, Perfecto Paseiro Losada, and Ana Rodríguez Bernaldo de Quirós. 2019. "GC-MS Screening for the Identification of Potential Migrants Present in Polymeric Coatings of Food Cans" Polymers 11, no. 12: 2086. https://doi.org/10.3390/polym11122086
APA StyleLestido Cardama, A., Sendón, R., Bustos, J., Santillana, M. I., Paseiro Losada, P., & Rodríguez Bernaldo de Quirós, A. (2019). GC-MS Screening for the Identification of Potential Migrants Present in Polymeric Coatings of Food Cans. Polymers, 11(12), 2086. https://doi.org/10.3390/polym11122086