Flame Retardancy Index for Thermoplastic Composites
Abstract
:1. Problem Description
2. Background and Methodology
3. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Babrauskas, V. The Cone Calorimeter, SFPE Handbook of Fire Protection Engineering, 2nd ed.; NFPA: Quincy, MA, USA, 1995; pp. 3–52. [Google Scholar]
- Si, J.; Ping, P.; Xie, H.; Yang, W.; Lu, H. The influence of multiwalled carbon nanotubes-NiCoAl layered double hydroxide hybrids on fire safety performance of poly(ethylene-co-vinyl acetate) composites. Polym. Compos. 2018, 39, E835–E841. [Google Scholar] [CrossRef]
- Costache, M.C.; Heidecker, M.J.; Manias, E.; Camino, G.; Frache, A.; Beyer, G.; Gupta, R.K.; Wilkie, C.A. The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene–vinyl acetate copolymer and polystyrene. Polymer 2007, 48, 6532–6545. [Google Scholar] [CrossRef]
- Ye, L.; Wu, Q.; Qu, B. Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites. Polym. Degrad. Stab. 2009, 94, 751–756. [Google Scholar] [CrossRef]
- Babrauskas, V.; Grayson, S.J. (Eds.) Heat Release in Fires; Interscience Communications Ltd.: London, UK, 1992; reprinted 2009. [Google Scholar]
- Hirschler, M.M. Poly(vinyl chloride) and its fire properties. Fire Mater. 2017, 41, 993–1006. [Google Scholar] [CrossRef]
- Jash, P.; Wilkie, C.A. Effects of surfactants on the thermal and fire properties of poly(methyl methacrylate)/clay nanocomposites. Polym. Degrad. Stab. 2005, 88, 401–406. [Google Scholar] [CrossRef]
- Wang, L.; Xie, X.; Su, S.; Feng, J.; Wilkie, C.A. A comparison of the fire retardancy of poly(methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite. Polym. Degrad. Stab. 2010, 95, 572–578. [Google Scholar] [CrossRef]
- Laachachi, A.; Leroy, E.; Cochez, M.; Ferriol, M.; Cuesta, J.M.L. Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate). Polym. Degrad. Stab. 2005, 89, 344–352. [Google Scholar] [CrossRef]
- Nyambo, C.; Kandare, E.; Wilkie, C.A. Thermal stability and flammability characteristics of ethylene vinyl acetate (EVA) composites blended with a phenyl phosphonate-intercalated layered double hydroxide (LDH), melamine polyphosphate and/or boric acid. Polym. Degrad. Stab. 2009, 94, 513–520. [Google Scholar] [CrossRef]
- Nyambo, C.; Wilkie, C.A. Layered double hydroxides intercalated with borate anions: Fire and thermal properties in ethylene vinyl acetate copolymer. Polym. Degrad. Stab. 2009, 94, 506–512. [Google Scholar] [CrossRef]
- Wu, X.; Wang, L.; Wu, C.; Yu, J.; Xie, L.; Wang, G.; Jiang, P. Influence of char residues on flammability of EVA/EG, EVA/NG and EVA/GO composites. Polym. Degrad. Stab. 2012, 97, 54–63. [Google Scholar] [CrossRef]
- Duquesne, S.; Jama, C.; le Bras, M.; Delobel, R.; Recourt, P.; Gloaguen, J.M. Elaboration of EVA–nanoclay systems—Characterization, thermal behaviour and fire performance. Compos. Sci. Technol. 2003, 63, 1141–1148. [Google Scholar] [CrossRef]
- Wei, L.-L.; Wang, D.-Y.; Chen, H.-B.; Chen, L.; Wang, X.-L.; Wang, Y.-Z. Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly(lactic acid). Polym. Degrad. Stab. 2011, 96, 1557–1561. [Google Scholar] [CrossRef]
- Tao, K.; Li, J.; Xu, L.; Zhao, X.; Xue, L.; Fan, X.; Yan, Q. A novel phosphazene cyclomatrix network polymer: Design, synthesis and application in flame retardant polylactide. Polym. Degrad. Stab. 2011, 96, 1248–1254. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, Q.; Li, J.; Tao, K.; Xue, L.; Yan, Q. Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polym. Degrad. Stab. 2011, 96, 183–189. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, R.; Wang, X.; Wang, B.; Song, L.; Hu, Y.; Gong, X. Enhancement of Flame Retardant Performance of Bio-Based Polylactic Acid Composites with the Incorporation of Aluminum Hypophosphite and Expanded Graphite. J. Macromol. Sci. Part A 2013, 50, 255–269. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, P.; Gui, H.; Wang, X.; Ding, Y. Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide. Compos. Part A Appl. Sci. Manuf. 2015, 77, 147–153. [Google Scholar] [CrossRef]
- Wei, P.; Bocchini, S.; Camino, G. Flame retardant and thermal behavior of polylactide/expandable graphite composites. Polimery 2013, 58, 361. [Google Scholar] [CrossRef]
- Marosfoi, B.B.; Garas, S.; Bodzay, B.; Zubonyai, F.; Marosi, G. Flame retardancy study on magnesium hydroxide associated with clays of different morphology in polypropylene matrix. Polym. Adv. Technol. 2008, 19, 693–700. [Google Scholar] [CrossRef]
- Cao, W.C.; Wang, L.J.; Xie, X.L.; Wilkie, C.A. Thermal Stability and Fire Retardancy of Polypropylene/Sepiolite Composite, Fire and Polymers VI: New Advances in Flame Retardant Chemistry and Science; American Chemical Society: Washington, DC, USA, 2012; pp. 391–406. [Google Scholar]
- Su, S.; Jiang, D.D.; Wilkie, C.A. Poly(methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically-modified clays. Polym. Degrad. Stab. 2004, 83, 321–331. [Google Scholar] [CrossRef]
- Pappalardo, S.; Russo, P.; Acierno, D.; Rabe, S.; Schartel, B. The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene. Eur. Polym. J. 2016, 76, 196–207. [Google Scholar] [CrossRef]
- Sabet, M.; Hassan, A.; Ratnam, C.T. Effect of zinc borate on flammability/thermal properties of ethylene vinyl acetate filled with metal hydroxides. J. Reinf. Plast. Compos. 2013, 32, 1122–1128. [Google Scholar] [CrossRef]
- Morgan, A.B. The Future of Flame Retardant Polymers—Unmet Needs and Likely New Approaches. Polym. Rev. 2018. [CrossRef]
- Schartel, B.; Wilkie, C.A.; Camino, G. Recommendations on the scientific approach to polymer flame retardancy: Part 1—Scientific terms and methods. J. Fire Sci. 2016, 34, 447–467. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Paran, S.M.R.; Jannesari, A.; Saeb, M.R. ‘Cure Index’ for thermoset composites. Prog. Org. Coat. 2019, 127, 429–434. [Google Scholar] [CrossRef]
Polymer | FR (wt %) | Irradiance (kW/m²) | TTI (s) | pHRR (kW/m²) | THR (MJ/m2) | Ref. |
---|---|---|---|---|---|---|
PMMA | - | 35 | 21 | 790 | 76 | [7] |
PMMA | MMT- 2 | 35 | 24 | 725 | 71 | [7] |
PMMA | MMT- 4 | 35 | 20 | 634 | 72 | [7] |
PMMA | MMT- 6 | 35 | 20 | 579 | 68 | [7] |
PMMA | POSS-1 | 35 | 17 | 789 | 74 | [7] |
PMMA | POSS-3 | 35 | 17 | 825 | 68 | [7] |
PMMA | POSS-6 | 35 | 20 | 765 | 71 | [7] |
PMMA | - | 50 | 9 | 1129 | 86 | [8] |
PMMA | LDH-3 | 50 | 10 | 915 | 77 | [8] |
PMMA | LDH-5 | 50 | 12 | 790 | 76 | [8] |
PMMA | LDH-10 | 50 | 9 | 615 | 72 | [8] |
PMMA | MMT-3 | 50 | 12 | 777 | 82 | [8] |
PMMA | MMT-5 | 50 | 13 | 625 | 80 | [8] |
PMMA | MMT-10 | 50 | 13 | 508 | 77 | [8] |
PMMA | Kaolin-3 | 50 | 10 | 1014 | 80 | [8] |
PMMA | Kaolin-5 | 50 | 10 | 970 | 76 | [8] |
PMMA | Kaolin-10 | 50 | 7 | 875 | 78 | [8] |
PMMA | - | 35 | 69 | 620 | 110 | [8] |
PMMA | OMMT-10 | 35 | 74 | 320 | 110 | [9] |
PMMA | - | 35 | 31 | 779 | 90 | [9] |
PMMA | Styreneoligomer-containing MMT (COPS)-2.5 | 35 | 32 | 737 | 88 | [9] |
PMMA | Styreneoligomer-containing MMT(COPS)-5 | 35 | 34 | 689 | 88 | [9] |
PMMA | Styreneoligomer-containing MMT(COPS)-15 | 35 | 39 | 629 | 84 | [9] |
PMMA | Styreneoligomer-containing MMT(COPS)-25 | 35 | 45 | 663 | 88 | [9] |
EVA | - | 35 | 65 | 1680 | 124 | [10] |
EVA | Boric acid-10 | 35 | 35 | 899 | 112 | [10] |
EVA | Melamine polyphosphate-10 | 35 | 47 | 715 | 112 | [10] |
EVA | MgAl–LDH-10 | 35 | 33 | 793 | 117 | [10] |
EVA | - | 35 | 58 | 2027 | 118 | [11] |
EVA | MgAl–borate LDH-3 | 35 | 35 | 1169 | 110 | [11] |
EVA | MgAl–borate LDH-5 | 35 | 36 | 1146 | 111 | [11] |
EVA | MgAl–borate LDH-10 | 35 | 36 | 1031 | 111 | [11] |
EVA | MgAl–borate LDH-20 | 35 | 40 | 919 | 99 | [11] |
EVA | MgAl–borate LDH-40 | 35 | 43 | 530 | 77 | [11] |
EVA | ZnAl–borate LDH-3 | 35 | 48 | 1287 | 116 | [11] |
EVA | ZnAl–borate LDH-5 | 35 | 51 | 867 | 117 | [11] |
EVA | ZnAl–borate LDH-10 | 35 | 53 | 750 | 111 | [11] |
EVA | ZnAl–borate LDH-20 | 35 | 38 | 721 | 102 | [11] |
EVA | ZnAl–borate LDH-40 | 35 | 51 | 460 | 77 | [11] |
EVA | MDH-40 | 35 | 63 | 703 | 75 | [11] |
EVA | ATH-40 | 35 | 54 | 743 | 74 | [11] |
EVA | Zinc hydroxide-40 | 35 | 36 | 1079 | 52 | [11] |
EVA | Zinc borate-40 | 35 | 50 | 231 | 81 | [11] |
EVA | - | 35 | 61 | 1709 | 121 | [11] |
EVA | Melamine polyphosphate-10 | 35 | 48 | 689 | 113 | [11] |
EVA | - | 35 | 53 | 836 | 101 | [12] |
EVA | expanded graphite-10 | 35 | 87 | 307 | 68 | [12] |
EVA | natural graphite-10 | 35 | 50 | 549 | 76 | [12] |
EVA | graphite oxide-10 | 35 | 63 | 536 | 92 | [12] |
EVA | Expanded graphite-16 (20phr) | 35 | 186 | 198 | 51 | [12] |
EVA | Expanded graphite- 24 (30phr) | 35 | 409 | 172 | 42 | [12] |
EVA | - | 35 | 48 | 1550 | 102 | [13] |
EVA | MMT- 3 | 35 | 44 | 860 | 94 | [13] |
EVA | MMT- 5 | 35 | 36 | 780 | 107 | [13] |
EVA | MMT- 10 | 35 | 44 | 630 | 99 | [13] |
PLA | - | 35 | 78 | 427 | 146 | [14] |
PLA | Aryl polyphenylphosphonate (WLA)-7 | 35 | 87 | 407 | 145 | [14] |
PLA | - | 35 | 60 | 272 | 65 | [15] |
PLA | PCPP-10 | 35 | 54 | 230 | 57 | [15] |
PLA | PCPP-20 | 35 | 47 | 123 | 15 | [15] |
PLA | - | 35 | 60 | 272 | 65 | [16] |
PLA | APP-15 | 35 | 70 | 208 | 46 | [16] |
PLA | - | 35 | 57 | 549 | 62 | [17] |
PLA | Aluminum hypophosphite-10 | 35 | 45 | 368 | 60 | [17] |
PLA | Aluminum hypophosphite-20 | 35 | 41 | 285 | 57.7 | [17] |
PLA | Expanded Graphite-10 | 35 | 46 | 244 | 60.2 | [17] |
PLA | Expanded Graphite-20 | 35 | 46 | 356 | 43.5 | [17] |
PLA | - | 35 | 88 | 324 | 49 | [18] |
PLA | MWNT-5 | 35 | 95 | 176 | 47 | [18] |
PLA | - | 50 | 64 | 425 | 64 | [19] |
PLA | Expandable graphite-1 | 50 | 44 | 410 | 70 | [19] |
PLA | Expandable graphite-5 | 50 | 43 | 380 | 44 | [19] |
PLA | Expandable graphite-10 | 50 | 60 | 305 | 52 | [19] |
PP | - | 50 | 37 | 584 | 75.6 | [20] |
PP | MDH-10 | 50 | 33 | 471 | 65.9 | [20] |
PP | Sepiolite-5 | 50 | 24 | 533 | 68.1 | [20] |
PP | - | 35 | 30 | 2086 | 90 | [21] |
PP | Sepiolite- 3 | 35 | 26 | 1534 | 90 | [21] |
PP | Sepiolite- 5 | 35 | 19 | 1401 | 78 | [21] |
PP | Sepiolite- 10 | 35 | 23 | 957 | 44 | [21] |
PP | organoSepiolite- 3 | 35 | 24 | 1368 | 47 | [21] |
PP | organoSepiolite- 5 | 35 | 25 | 1193 | 43 | [21] |
PP | organoSepiolite- 10 | 35 | 24 | 692 | 36 | [21] |
PP | - | 35 | 43 | 1845 | 118 | [22] |
PP | Styreneoligomer-containing MMT (COPS)-2.5 | 35 | 47 | 1953 | 114 | [22] |
PP | Styreneoligomer-containing MMT(COPS)-5 | 35 | 45 | 1889 | 111 | [22] |
PP | Styreneoligomer-containing MMT(COPS)-15 | 35 | 37 | 1448 | 108 | [22] |
PP | Styreneoligomer-containing MMT(COPS)-25 | 35 | 38 | 1191 | 102 | [22] |
PP | MAPS-2.5 | 35 | 44 | 2025 | 123 | [22] |
PP | MAPS-5 | 35 | 42 | 1738 | 120 | [22] |
PP | MAPS-15 | 35 | 39 | 1651 | 115 | [22] |
PP | MAPS-25 | 35 | 41 | 1139 | 105 | [22] |
PP | - | 35 | 54 | 1610 | 106 | [23] |
PP | Sepiolite-0.5 | 35 | 48 | 1701 | 108 | [23] |
PP | Modified Sepiolite-0.5 | 35 | 46 | 1665 | 106 | [23] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahabi, H.; Kandola, B.K.; Saeb, M.R. Flame Retardancy Index for Thermoplastic Composites. Polymers 2019, 11, 407. https://doi.org/10.3390/polym11030407
Vahabi H, Kandola BK, Saeb MR. Flame Retardancy Index for Thermoplastic Composites. Polymers. 2019; 11(3):407. https://doi.org/10.3390/polym11030407
Chicago/Turabian StyleVahabi, Henri, Baljinder K. Kandola, and Mohammad Reza Saeb. 2019. "Flame Retardancy Index for Thermoplastic Composites" Polymers 11, no. 3: 407. https://doi.org/10.3390/polym11030407
APA StyleVahabi, H., Kandola, B. K., & Saeb, M. R. (2019). Flame Retardancy Index for Thermoplastic Composites. Polymers, 11(3), 407. https://doi.org/10.3390/polym11030407