Synergistic Effects of Various Ceramic Fillers on Thermally Conductive Polyimide Composite Films and Their Model Predictions
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Polyimide-Filler Composite Films
2.3. Characterization
3. Results and Discussion
3.1. Morphology
3.2. Thermal Conductivity
3.3. Modeling
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shimazaki, Y.; Hojo, F.; Takezawa, Y. Highly Thermoconductive Polymer Nanocomposite with a Nanoporous α-Alumina Sheet. ACS Appl. Mater. Int. 2009, 1, 225–227. [Google Scholar] [CrossRef]
- Shimazaki, Y.; Hojo, F.; Takezawa, Y. Preparation and characterization of thermoconductive polymer nanocomposite with branched alumina nanofiber. Appl. Phys. Lett. 2008, 92, 133309. [Google Scholar] [CrossRef]
- Droval, G.; Feller, J.F.; Salagnac, P.; Glouannec, P. Thermal conductivity enhancement of electrically insulating syndiotactic poly(styrene) matrix for diphasic conductive polymer composites. Polym. Adv. Technol. 2006, 17, 732–745. [Google Scholar] [CrossRef]
- Hussain, M.; Oku, Y.; Nakahira, A.; Niihara, K. Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites. Mater. Lett. 1996, 26, 177–184. [Google Scholar] [CrossRef]
- Kuo, D.H.; Lin, C.Y.; Jhou, Y.C.; Cheng, J.Y.; Liou, G.S. Thermal conductive performance of organosoluble polyimide/BN and polyimide/(BN + ALN) composite films fabricated by a solution-cast method. Polym. Compos. 2013, 34, 252–258. [Google Scholar] [CrossRef]
- Li, T.L.; Hsu, S.L.C. Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and Nano-Sized Boron Nitride. J. Phys. Chem. B 2010, 114, 6825–6829. [Google Scholar] [CrossRef]
- Lee, H.L.; Kwon, O.H.; Ha, S.M.; Kim, B.G.; Kim, Y.S.; Won, J.C.; Kim, J.; Choi, J.H.; Yoo, Y. Thermal conductivity improvement of surface-enhanced polyetherimide (PEI) composites using polyimide-coated h-BN particles. Phys. Chem. Chem. Phys. 2014, 16, 20041–20046. [Google Scholar] [CrossRef]
- Zahid, M.; Masood, M.T.; Athanassiou, A.; Bayer, I.S. Sustainable thermal interface materials from recycled cotton textiles and graphene nanoplatelets. Appl. Phys. Lett. 2018, 113, 044103. [Google Scholar] [CrossRef]
- Huang, M.T.; Ishida, H. Investigation of the boron nitride/polybenzoxazine interphase. J. Polym. Sci. Pol. Phys. 1999, 37, 2360–2372. [Google Scholar] [CrossRef]
- Ishida, H.; Rimdusit, S. Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochim. Acta 1998, 320, 177–186. [Google Scholar] [CrossRef]
- Zhou, W.; Qi, S.; Li, H.; Shao, S. Study on insulating thermal conductive BN/HDPE composites. Thermochim. Acta 2007, 452, 36–42. [Google Scholar] [CrossRef]
- Lopes, C.M.A.; Felisberti, M.I. Thermal conductivity of PET/(LDPE/AI) composites determined by MDSC. Polym. Test. 2004, 23, 637–643. [Google Scholar] [CrossRef]
- Liu, J.; Ju, S.; Ding, Y.; Yang, R. Size effect on the thermal conductivity of ultrathin polystyrene films. Appl. Phys. Lett. 2014, 104, 153110. [Google Scholar] [CrossRef]
- Che, J.; Jing, M.; Liu, D.; Wang, K.; Fu, Q. Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation. Compos. A Appl. Sci. Manuf. 2018, 112, 32–39. [Google Scholar] [CrossRef]
- Bian, W.; Yao, T.; Chen, M.; Zhang, C.; Shao, T.; Yang, Y. The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin. Compos. Sci. Technol. 2018, 168, 420–428. [Google Scholar] [CrossRef]
- Chen, C.; Xue, Y.; Li, X.; Wen, Y.; Liu, J.; Xue, Z.; Mai, Y.W. High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging. Compos. A Appl. Sci. Manuf. 2019, 118, 67–74. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J. Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Compos. B Eng. 2013, 51, 140–147. [Google Scholar] [CrossRef]
- Ha, S.M.; Kwon, O.H.; Oh, Y.G.; Kim, Y.S.; Lee, S.G.; Won, J.C.; Cho, K.S.; Kim, B.G.; Yoo, Y. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system. Sci. Technol. Adv. Mater. 2015, 16, 065001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keith, J.M.; King, J.A.; Lenhart, K.M.; Zimny, B. Thermal conductivity models for carbon/liquid crystal polymer composites. J. Appl. Polym. Sci. 2007, 105, 3309–3316. [Google Scholar] [CrossRef]
- Agari, Y.; Ueda, A.; Nagai, S. Thermal conductivity of a polymer composite. J. Appl. Polym. Sci. 1993, 49, 1625–1634. [Google Scholar] [CrossRef]
- Weber, E.H.; Clingerman, M.L.; King, J.A. Thermally conductive nylon 6,6 and polycarbonate based resins. II. Modeling. J. Appl. Polym. Sci. 2003, 88, 123–130. [Google Scholar] [CrossRef]
- Bigg, D.M. Thermally conductive polymer compositions. Polym. Compos. 1986, 7, 125–140. [Google Scholar] [CrossRef]
- Clingerman, M.L.; Weber, E.H.; King, J.A.; Schulz, K.H. Development of an additive equation for predicting the electrical conductivity of carbon-filled composites. J. Appl. Polym. Sci. 2003, 88, 2280–2299. [Google Scholar] [CrossRef]
- Yoo, Y.; Lee, H.L.; Ha, S.M.; Jeon, B.K.; Won, J.C.; Lee, S.G. Effect of graphite and carbon fiber contents on the morphology and properties of thermally conductive composites based on polyamide 6. Polym. Int. 2014, 63, 151–157. [Google Scholar] [CrossRef]
- Hauser, R.A.; Keith, J.M.; King, J.A.; Holdren, J.L. Thermal conductivity models for single and multiple filler carbon/liquid crystal polymer composites. J. Appl. Polym. Sci. 2008, 110, 2914–2923. [Google Scholar] [CrossRef]
- Ha, S.M.; Lee, H.L.; Lee, S.G.; Kim, B.G.; Kim, Y.S.; Won, J.C.; Choi, W.J.; Lee, D.C.; Kim, J.; Yoo, Y. Thermal conductivity of graphite filled liquid crystal polymer composites and theoretical predictions. Compos. Sci. Technol. 2014, 88, 113–119. [Google Scholar] [CrossRef]
- Nielsen, L.E. Thermal conductivity of particulate-filled polymers. J. Appl. Polym. Sci. 1973, 17, 3819–3820. [Google Scholar] [CrossRef] [Green Version]
- Yoo, Y.; Spencer, M.W.; Paul, D.R. Morphology and mechanical properties of glass fiber reinforced Nylon 6 nanocomposites. Polymer 2011, 52, 180–190. [Google Scholar] [CrossRef]
- Spencer, M.W.; Cui, L.; Yoo, Y.; Paul, D.R. Morphology and properties of nanocomposites based on HDPE/HDPE-g-MA blends. Polymer 2010, 51, 1056–1070. [Google Scholar] [CrossRef]
- Ren, P.G.; Si, X.H.; Sun, Z.F.; Ren, F.; Pei, L.; Hou, S.Y. Synergistic effect of BN and MWCNT hybrid fillers on thermal conductivity and thermal stability of ultra-high-molecular-weight polyethylene composites with a segregated structure. J. Polym. Res. 2016, 23, 21. [Google Scholar] [CrossRef]
- Fornes, T.D.; Paul, D.R. Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 2003, 44, 4993–5013. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Kim, B.G.; Kim, Y.S.; Bae, Y.-S.; Kim, J.; Yoo, Y. Synergistic Effects of Various Ceramic Fillers on Thermally Conductive Polyimide Composite Films and Their Model Predictions. Polymers 2019, 11, 484. https://doi.org/10.3390/polym11030484
Song H, Kim BG, Kim YS, Bae Y-S, Kim J, Yoo Y. Synergistic Effects of Various Ceramic Fillers on Thermally Conductive Polyimide Composite Films and Their Model Predictions. Polymers. 2019; 11(3):484. https://doi.org/10.3390/polym11030484
Chicago/Turabian StyleSong, Heeseok, Byoung Gak Kim, Yong Seok Kim, Youn-Sang Bae, Jooheon Kim, and Youngjae Yoo. 2019. "Synergistic Effects of Various Ceramic Fillers on Thermally Conductive Polyimide Composite Films and Their Model Predictions" Polymers 11, no. 3: 484. https://doi.org/10.3390/polym11030484
APA StyleSong, H., Kim, B. G., Kim, Y. S., Bae, Y. -S., Kim, J., & Yoo, Y. (2019). Synergistic Effects of Various Ceramic Fillers on Thermally Conductive Polyimide Composite Films and Their Model Predictions. Polymers, 11(3), 484. https://doi.org/10.3390/polym11030484