Interaction of Surface Energy Components between Solid and Liquid on Wettability, and Its Application to Textile Anti-Wetting Finish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Anti-Wetting Coating
2.3. Alkali Etching
2.4. Wettability
2.5. Surface Energy of Solid Surface
- θ: contact angle of liquid on solid surface
- : interfacial energy between solid and liquid
- : surface energy of solid
- : dispersive component surface energy of solid
- : polar component surface energy of solid
- : surface energy of liquid
- : dispersive component surface energy of liquid
- : polar component surface energy of liquid
2.6. Surface Chemistry and Morphology
3. Results and Discussion
3.1. Wettability of Flat Surfaces
3.1.1. Surface Energy Modification with Hydrophobic Treatment
3.1.2. Solid–Liquid Interaction on Wettability
3.1.3. Interplay of Surface Energy Components on Wetting
3.2. Wetting of Fibrous Surfaces
- : contact angle in the Cassie–Baxter state
- : contact angle in Young’s model in Equation (2) (flat surface)
- f: solid fraction in the Cassie–Baxter model, which is the fraction of wetted surface area to the overall projected surface area.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nosonovsky, M.; Bhushan, B. Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 2009, 14, 270–280. [Google Scholar] [CrossRef]
- Zhang, L.; Zhong, Y.; Cha, D.; Wang, P. A self-cleaning underwater superoleophobic mesh for oil-water separation. Sci. Rep. 2013, 3, 2326. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, S.M.; Habimana, O.; Lawler, J.; O’Reilly, B.; Daniels, S.; Casey, E.; Cowley, A. Cicada wing surface topography: An investigation into the bactericidal properties of nanostructural features. ACS Appl. Mater. Interfaces 2016, 8, 14966–14974. [Google Scholar] [CrossRef]
- MacCallum, N.; Howell, C.; Kim, P.; Sun, D.; Friedlander, R.; Ranisau, J.; Ahanotu, O.; Lin, J.J.; Vena, A.; Hatton, B.; et al. Liquid-infused silicone as a biofouling-free medical material. ACS Biomater. Sci. Eng. 2015, 1, 43–51. [Google Scholar] [CrossRef]
- Du, C.; Wang, J.; Chen, Z.; Chen, D. Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method. Appl. Surf. Sci. 2014, 313, 304–310. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Yang, J.-H.; Li, L.-L.; Cui, C.-X.; Li, Y.; Liu, S.-Q.; Zhou, X.-M.; Qu, L.-B. Facile fabrication of superhydrophobic copper-foam and electrospinning polystyrene fiber for combinational oil–water separation. Polymers 2019, 11, 97. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Levänen, E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 2013, 3, 12003–12020. [Google Scholar] [CrossRef]
- Ejenstam, L.; Ovaskainen, L.; Rodriguez-Meizoso, I.; Wågberg, L.; Pan, J.; Swerin, A.; Claesson, P.M. The effect of superhydrophobic wetting state on corrosion protection-the AKD example. J Colloid Interface Sci. 2013, 412, 56–64. [Google Scholar] [CrossRef]
- Liu, M.; Wang, S.; Jiang, L. Bioinspired multiscale surfaces with special wettability. MRS Bull. 2013, 38, 375–382. [Google Scholar] [CrossRef]
- Wang, Z.; Elimelech, M.; Lin, S. Environmental applications of interfacial materials with special wettability. Environ. Sci. Technol. 2016, 50, 2132–2150. [Google Scholar] [CrossRef]
- Matthew, J.H.; Melik, C.D. Anisotropic wetting on structured surfaces. MRS Bull. 2013, 38, 391–396. [Google Scholar] [CrossRef]
- Liu, K.; Yao, X.; Jiang, L. Recent developments in bio-inspired special wettability. Chem. Soc. Rev. 2010, 39, 324–3255. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.-S.; Sun, T.; Feng, L.; Aizenberg, J. Interfacial materials with special wettability. MRS Bull. 2013, 38, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Park, S.C.; Kim, M.J.; Choi, K.; Kim, J.; Choi, S.-O. Influence of shell compositions of solution blown PVP/PCL core–shell fibers on drug release and cell growth. RSC Adv. 2018, 8, 32470–32480. [Google Scholar] [CrossRef]
- Park, S.C.; Yuan, Y.; Choi, K.; Choi, S.-O.; Kim, J. Doxorubicin release controlled by induced phase separation and use of a co-solvent. Materials 2018, 11, 681. [Google Scholar] [CrossRef]
- Yuan, Y.; Choi, K.; Choi, S.-O.; Kim, J. Early stage release control of an anticancer drug by drug-polymer miscibility in a hydrophobic fiber-based drug delivery system. RSC Adv. 2018, 8, 19791–19803. [Google Scholar] [CrossRef]
- Mandolfino, C.; Lertora, E.; Gambaro, C.; Pizzorni, M. Functionalization of neutral polypropylene by using low pressure plasma treatment: Effects on surface characteristics and adhesion properties. Polymers 2019, 11, 202. [Google Scholar] [CrossRef]
- Scarfato, P.; Schiavone, N.; Rossi, G.; Incarnato, L. An easy route to wettability changes of polyethylene terephthalate–silicon oxide substrate films for high barrier applications, surface-modified with a self-assembled monolayer of fluoroalkylsilanes. Polymers 2019, 11, 257. [Google Scholar] [CrossRef]
- Yuan, Y.; Choi, S.-O.; Kim, J. Analysis of contact area between water and irregular fibrous surface for prediction of wettability. RSC Adv. 2016, 6, 73313–73322. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Hays, M.P.; Hardwidge, P.R.; Kim, J. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv. 2017, 7, 14254–14261. [Google Scholar] [CrossRef] [Green Version]
- Dou, X.-Q.; Zhang, D.; Feng, C.; Jiang, L. Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion. ACS Nano 2015, 9, 10664–10672. [Google Scholar] [CrossRef]
- Kota, A.K.; Li, Y.; Mabry, J.M.; Tuteja, A. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis. Adv. Mater. 2012, 24, 5838–5843. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Guo, R.; Björnmalm, M.; Richardson, J.J.; Li, L.; Peng, C.; Bertleff-Zieschang, N.; Xu, W.; Jiang, J.; Caruso, F. Coatings super-repellent to ultralow surface tension liquids. Nat. Mater. 2018, 17, 1040–1047. [Google Scholar] [CrossRef]
- Cortese, B.; Riehle, M.O.; D’Amone, S.; Gigli, G. Influence of variable substrate geometry on wettability and cellular responses. J. Colloid Interface Sci. 2013, 394, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Kota, A.K.; Choi, W.; Tuteja, A. Superomniphobic surfaces: Design and durability. MRS Bull. 2013, 38, 383–390. [Google Scholar] [CrossRef]
- Tuteja, A.; Choi, W.; Ma, M.; Mabry, J.M.; Mazzella, S.A.; Rutledge, G.C.; McKinley, G.H.; Cohen, R.E. Designing superoleophobic surfaces. Science 2007, 318, 1618–1622. [Google Scholar] [CrossRef] [PubMed]
- Anish, T.; Wonjae, C.; Joseph, M.M.; Gareth, H.M.; Robert, E.C. Robust omniphobic surfaces. Proc. Natl. Acad. Sci. USA 2008, 105, 18200–18205. [Google Scholar] [CrossRef] [Green Version]
- Kota, A.K.; Mabry, J.M.; Tuteja, A. Superoleophobic surfaces: Design criteria and recent studies. Surf. Innov. 2013, 1, 71–83. [Google Scholar] [CrossRef]
- Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar] [CrossRef]
- Lee, S.-M.; Kwon, T.H. Effects of intrinsic hydrophobicity on wettability of polymer replicas of a superhydrophobic lotus leaf. J. Micromech. Microeng. 2007, 17, 687–692. [Google Scholar] [CrossRef]
- Baidya, A.; Ganayee, M.A.; Jakka Ravindran, S.; Tam, K.C.; Das, S.K.; Ras, R.H.A.; Pradeep, T. Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 2017, 11, 11091–11099. [Google Scholar] [CrossRef] [PubMed]
- Mates, J.E.; Schutzius, T.M.; Bayer, I.S.; Qin, J.; Waldroup, D.E.; Megaridis, C.M. Water-based superhydrophobic coatings for nonwoven and cellulosic substrates. Ind. Eng. Chem. Res. 2014, 53, 222–227. [Google Scholar] [CrossRef]
- Shim, M.; Kim, J.; Park, C. The effects of surface energy and roughness on the hydrophobicity of woven fabrics. Text. Res. J. 2014, 84, 1268–1278. [Google Scholar] [CrossRef]
- Gristina, R.; D’Aloia, E.; Senesi, G.S.; Milella, A.; Nardulli, M.; Sardella, E.; Favia, P.; d’Agostino, R. Increasing cell adhesion on plasma deposited fluorocarbon coatings by changing the surface topography. J. Biomed. Mater. Res. B 2009, 88, 139–149. [Google Scholar] [CrossRef]
- Ding, G.; Peijnenburg, W.J.G.M. Physicochemical properties and aquatic toxicity of poly- and perfluorinated compounds. Crit. Res. Environ. Sci. Technol. 2013, 43, 598–678. [Google Scholar] [CrossRef]
- He, Y.; Jiang, C.; Yin, H.; Chen, J.; Yuan, W. Superhydrophobic silicon surfaces with micro–nano hierarchical structures via deep reactive ion etching and galvanic etching. J. Colloid Interface Sci. 2011, 364, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.S.; Gandhi, M.; Chen, S.S.; Chang, H.M.; Dan, C.T.N.; Le, H.Q. Anti-wetting behaviour of a superhydrophobic octadecyltrimethoxysilane blended PVDF/recycled carbon black composite membrane for enhanced desalination. Environ. Sci. Water Res. Technol. 2018, 4, 1612–1623. [Google Scholar] [CrossRef]
- Hong, H.R.; Kim, J.; Park, C.H. Facile fabrication of multifunctional fabrics: Use of copper and silver nanoparticles for antibacterial, superhydrophobic, conductive fabrics. RSC Adv. 2018, 8, 41782–41794. [Google Scholar] [CrossRef]
- Kalin, M.; Polajnar, M. The correlation between the surface energy, the contact angle and the spreading parameter, and their relevance for the wetting behaviour of DLC with lubricating oils. Tribol. Int. 2013, 66, 225–233. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J Appl. Polym. Sci. 1961, 13, 1741–1747. [Google Scholar] [CrossRef]
- Nishimoto, S.; Bhushan, B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv. 2013, 3, 671–690. [Google Scholar] [CrossRef]
- Jeevahan, J.; Chandrasekaran, M.; Britto Joseph, G.; Durairaj, R.B.; Mageshwaran, G. Superhydrophobic surfaces: A review on fundamentals, applications, and challenges. J. Coat. Tehnol. Res. 2018, 15, 231–250. [Google Scholar] [CrossRef]
- Xue, Y.; Chu, S.; Lv, P.; Duan, H. Importance of hierarchical structures in wetting stability on submersed superhydrophobic surfaces. Langmuir 2012, 28, 9440–94450. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Aoki, Y.; Habazaki, H. Fabrication of super-oil-repellent dual pillar surfaces with optimized pillar intervals. Langmuir 2011, 27, 11752–11756. [Google Scholar] [CrossRef]
- Park, Y.; Park, C.H.; Kim, J. A Quantitative Analysis on the Surface Roughness and the Level of Hydrophobicity for Superhydrophobic ZnO Nanorods Grown Textiles. Text. Res. J. 2014, 84, 1776–1788. [Google Scholar] [CrossRef]
- Qian, B.; Shen, Z. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir 2005, 21, 9007–9009. [Google Scholar] [CrossRef]
- Xue, C.-H.; Li, Y.-R.; Zhang, P.; Ma, J.-Z.; Jia, S.-T. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization. ACS Appl. Mater. Interfaces 2014, 6, 10153–10161. [Google Scholar] [CrossRef] [PubMed]
- Mazrouei-Sebdani, Z.; Khoddami, A. Alkaline hydrolysis: A facile method to manufacture superhydrophobic polyester fabric by fluorocarbon coating. Prog. Org. Coat. 2011, 72, 638–646. [Google Scholar] [CrossRef]
- Janczuk, B.; Zdziennicka, A. A study on the components of surface free energy of quartz from contact angle measurements. J. Mater. Sci. 1994, 29, 3559–3564. [Google Scholar] [CrossRef]
- Szymczyk, K.; Zdziennicka, A.; Krawczyk, J.; Jańczuk, B. Wettability, adhesion, adsorption and interface tension in the polymer/surfactant aqueous solution system: II. Work of adhesion and adsorption of surfactant at polymer–solution and solution–air interfaces. Colloids Surf. A Physicochem. Eng. Asp. 2012, 402, 139–145. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 1905–1971. [Google Scholar] [CrossRef]
Substrate | Polymer | Process | Thickness (mm) | Basis Weight (g/m2) |
---|---|---|---|---|
Film | Cellulose | Casting | 0.3 | 45 |
PP | Casting | 0.3 | 42 | |
PET | Casting | 0.4 | 22 | |
Nonwoven | Cellulose | Spunlace | 2.0 | 26 |
PET | Spunbond | 1.4 | 20 |
Specimen Code | Polymer | Substrate | Etching | Chemical Treatment |
---|---|---|---|---|
Cel | Cellulose | Flat film | None | None |
Cel-f | C4F8 plasma, f | |||
Cel-Si | DTMS deposition, Si | |||
PP | PP | None | ||
PET | PET | None | ||
PET-f | C4F8 plasma, f | |||
PET-Si | DTMS deposition, Si | |||
Cel(SL) | Cellulose | Spunlace (SL) nonwoven | None | |
Cel(SL)-f | C4F8 plasma, f | |||
Cel(SL)-Si | DTMS deposition, Si | |||
PET(SB) | PET | Spunbond (SB) nonwoven | None | |
PET(SB)-f | C4F8 plasma, f | |||
PET(SB)-Si | DTMS deposition, Si | |||
PET(SB-etch) | PET | Alkali etching | None | |
PET(SB-etch)-f | C4F8 plasma, f | |||
PET(SB-etch)-Si | DTMS deposition, Si |
Liquid | (mN/m) | (mN/m) | (mN/m) | PL (Polar Ratio) |
---|---|---|---|---|
Water (WA) | 72.8 | 21.8 | 51.0 | 0.70 |
Formamide (FA) | 58.4 | 31.4 | 27.0 | 0.46 |
Methylene iodide (MI) | 50.8 | 50.4 | 0.40 | 0.008 |
Specimen | Contact Angle (˚) | Surface Energy (mN/m) | Polar Ratio (PS) | |||
---|---|---|---|---|---|---|
WA | MI | γ | γd | γp | ||
Cel | 0 | 50 | 73.4 | 28.0 | 45.4 | 0.628 |
Cel-f | 107 | 94 | 12.5 | 10.2 | 2.3 | 0.184 |
Cel-Si | 101 | 60 | 28.6 | 28.2 | 0.42 | 0.015 |
PP | 105 | 63 | 26.9 | 26.7 | 0.16 | 0.006 |
PET | 96 | 61 | 28.5 | 27.2 | 1.34 | 0.047 |
PET-f | 106 | 95 | 12.5 | 9.75 | 2.73 | 0.219 |
PET-Si | 104 | 61 | 28.0 | 27.8 | 0.17 | 0.006 |
Specimen | C (%) | O (%) | F (%) | Si (%) |
---|---|---|---|---|
PP | 97.8 | 2.2 | - | - |
Cel | 77.1 | 22.9 | - | - |
Cel-f | 52.0 | 30.9 | 17.2 | |
Cel-Si | 51.2 | 27.3 | - | 21.6 |
PET | 91.9 | 2.2 | - | - |
PET-f | 49.2 | 7.3 | 43.5 | - |
PET-Si | 67.8 | 23.3 | - | 8.8 |
CA (°) | ShA (°) | |||||||
---|---|---|---|---|---|---|---|---|
Specimen | WA | FA | MI | WA | ||||
Cel | 0 | (±0.0) | 0 | (±0.0) | 50 | (±0.8) | >50 | (±0.0) |
Cel-f | 107 | (±1.9) | 105 | (±1.6) | 94 | (±3.0) | >50 | (±0.0) |
Cel-Si | 101 | (±1.4) | 84 | (±2.8) | 60 | (±1.3) | >50 | (±0.0) |
PP | 105 | (±3.7) | 88 | (±2.3) | 63 | (±2.3) | >50 | (±0.0) |
PET | 96 | (±4.2) | 82 | (±1.9) | 61 | (±1.7) | >50 | (±0.0) |
PET-f | 106 | (±1.2) | 102 | (±2.6) | 95 | (±2.7) | >50 | (±0.0) |
PET-Si | 104 | (±2.3) | 90 | (±2.8) | 61 | (±1.9) | >50 | (±0.0) |
Cel(SL) | 0 | (±0.0) | 0 | (±0.0) | 0 | (±0.0) | >50 | (±0.0) |
Cel(SL)-f | 166 | (±2.3) | 159 | (±2.5) | 153 | (±3.4) | 12.8 | (±0.8) |
Cel(SL)-Si | 164 | (±4.1) | 152 | (±2.3) | 148 | (±4.3) | 8.8 | (±0.8) |
PET(SB) | 126 | (±2.8) | 84 | (±4.5) | 0 | (±0.0) | >50 | (±0.0) |
PET(SB)-f | 147 | (±2.9) | 143 | (±2.7) | 140 | (±3.7) | 15.8 | (±0.8) |
PET(SB)-Si | 145 | (±3.8) | 136 | (±1.7) | 127 | (±2.5) | >50 | (±0.0) |
PET(SB-etch) | 129 | (±3.5) | 0 | (±0.0) | 0 | (±0.0) | >50 | (±0.0) |
PET(SB-etch)-f | 156 | (±2.9) | 150 | (±1.4) | 150 | (±2.4) | 5.6 | (±0.5) |
PET(SB-etch)-Si | 151 | (±3.3) | 145 | (±3.2) | 140 | (±3.7) | 7.0 | (±0.6) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Lee, J.; Choi, S.-O.; Kim, J. Interaction of Surface Energy Components between Solid and Liquid on Wettability, and Its Application to Textile Anti-Wetting Finish. Polymers 2019, 11, 498. https://doi.org/10.3390/polym11030498
Song K, Lee J, Choi S-O, Kim J. Interaction of Surface Energy Components between Solid and Liquid on Wettability, and Its Application to Textile Anti-Wetting Finish. Polymers. 2019; 11(3):498. https://doi.org/10.3390/polym11030498
Chicago/Turabian StyleSong, Kwanwoo, Jinwook Lee, Seong-O Choi, and Jooyoun Kim. 2019. "Interaction of Surface Energy Components between Solid and Liquid on Wettability, and Its Application to Textile Anti-Wetting Finish" Polymers 11, no. 3: 498. https://doi.org/10.3390/polym11030498
APA StyleSong, K., Lee, J., Choi, S. -O., & Kim, J. (2019). Interaction of Surface Energy Components between Solid and Liquid on Wettability, and Its Application to Textile Anti-Wetting Finish. Polymers, 11(3), 498. https://doi.org/10.3390/polym11030498