Synthesis of Negatively Charged Polyol-Functional PSF Membranes with Good Hydrophilic and Efficient Boron Removal Properties
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Procedure of PSF-PDA/PEI Membrane Preparation
2.3. Procedure of PSF-Diol Membrane Preparation
2.4. Membrane Characterization
2.5. Water-Uptake Test
2.6. The Water Flux Test
2.7. Boron Adsorption Experiments
3. Results and Discussion
3.1. Water Uptake of Membranes
3.2. Membrane Surface Structure Characterization
3.2.1. Surface Chemical Composition
3.2.2. Surface and Cross-Sectional Morphologies of Membranes
3.2.3. Zeta Potential Tests
3.2.4. WCA Measurements
3.3. Membrane Flux Performance
3.4. Boron Removal Experiments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wolska, J.; Bryjak, M. Methods for boron removal from aqueous solutions—A review. Desalination 2013, 310, 18–24. [Google Scholar] [CrossRef]
- Rahmawati, K.; Ghaffour, N.; Aubry, C.; Amy, G.L. Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes. J. Membr. Sci. 2012, 423, 522–529. [Google Scholar] [CrossRef]
- Tang, Y.P.; Thong, L.; Chung, T.S. Recent advances in membrane materials and technologies for boron removal. J. Membr. Sci. 2017, 541, 434–446. [Google Scholar] [CrossRef]
- Pieruz, G.; Grassia, P.; Dryfe, R.A.W. Boron removal from produced water by facilitated ion transfer. Desalination 2004, 167, 416–418. [Google Scholar] [CrossRef]
- Sayiner, G.; Kandemirli, F.; Dimoglo, A. Evaluation of boron removal by electrocoagulation using iron and aluminum electrodes. Desalination 2008, 230, 205–212. [Google Scholar] [CrossRef]
- Power, P.P.; Woods, G.W. The chemistry of boron and its speciation in plants. Plant Soil 1997, 193, 1–13. [Google Scholar] [CrossRef]
- Wang, L.; Qi, T.; Gao, Z. Synthesis of N-methyl glucamine modified macroporous poly(GMA-co-TRIM) and its performance as a boron sorbent. React. Funct. Polym. 2007, 67, 202–209. [Google Scholar] [CrossRef]
- Dydo, P.; Turek, M. Boron transport and removal using ion-exchange membranes: A critical review. Desalination 2013, 310, 2–8. [Google Scholar] [CrossRef]
- Samatya, S.; Kabay, N.; Tuncel, A. Monodisper-porous N-methyl-D-glucamine functionalized poly(vinylbenzyl chloride-co-divinylbenzene) beads as boron selective sorbent. J. Appl. Polym. Sci. 2012, 126, 1475–1483. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, X.; Zhao, X.; Li, F.Z. Removal of high level boron in aqueous solutions using continuous electrodeionization (CEDI). Sep. Purif. Technol. 2018, 192, 297–301. [Google Scholar] [CrossRef]
- Nagasawa, H.; Iizuka, A.; Yamasaki, A. Utilization of bipolar membrane electrodialysis for the removal of boron from aqueous solution. Ind. Eng. Chem. Res. 2011, 50, 6325–6330. [Google Scholar] [CrossRef]
- Kustin, K.; Pizer, R. Temperature-jump study of the rate and mechanism of the boric acid-tartaric acid complexation. J. Am. Chem. Soc. 1969, 91, 317–322. [Google Scholar] [CrossRef]
- Yilmaz, A.E.; Boncukcuolu, R.; Bayar, S.; Fim, B.A.; Kocakerim, M. Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation. Korean J. Chem. Eng. 2012, 29, 1382–1387. [Google Scholar] [CrossRef]
- Wei, Y.; Zheng, Y.; Chen, J. Functionalization of regenerated cellulose membrane via surface initiated atom transfer radical polymerization for boron removal from aqueous solution. Langmuir 2011, 27, 6018–6025. [Google Scholar] [CrossRef]
- Shi, Q.; Meng, J.; Xu, R.; Du, X.; Zhang, Y. Synthesis of hydrophilic polysulfone membranes having antifouling and boron adsorption properties via blending with an amphiphilic graft glycopolymer. J. Membr. Sci. 2013, 444, 50–59. [Google Scholar] [CrossRef]
- Kamboh, M.A.; Yilmaz, M. Synthesis of N-methyl glucamine functionalized calyx [4] arene based magnetic poropollenin for the removal of boron from aqueous environment. Desalination 2013, 310, 67–74. [Google Scholar] [CrossRef]
- Tural, S.; Ece, M.S.; Tural, B. Synthesis of novel magnetic nano-sorbent functionalized with N-methyl-D-glucamine by click chemistry and removal of boron with magnetic separation method. Ecotoxicol. Environ. Saf. 2018, 162, 245–252. [Google Scholar] [CrossRef]
- Du, X.; Meng, J.; Xu, R.; Shi, Q.; Zhang, Y. Polyol-grafted polysulfone membranes for boron removal: Effects of the ligand structure. J. Membr. Sci. 2015, 476, 205–215. [Google Scholar] [CrossRef]
- Meng, J.; Cao, J.; Xu, R.; Wang, Z.; Sun, R. Hyperbranched grafting enabling simultaneous enhancement of the boric acid uptake and the adsorption rate of a complexing membrane. J. Mater. Chem. A 2016, 4, 11656–11665. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Zhang, Y.; Meng, J.Q. Hyperbranched-polyol-tethered poly (amic acid) electrospun nanofiber membrane with ultrahigh adsorption capacity for boron removal. Appl. Surface Sci. 2017, 402, 21–30. [Google Scholar] [CrossRef]
- Yang, H.; Luo, J.; Lv, Y.; Shen, P.; Xu, Z. Surface engineering of polymer membranes via mussel-inspired chemistry. J. Membr. Sci. 2015, 483, 42–59. [Google Scholar] [CrossRef]
- Luo, R.; Wang, X.; Deng, J.C. Dopamine-assisted deposition of poly (ethylene imine) for efficient heparinization. Colloids Surf. B Biointerfaces 2016, 144, 90–98. [Google Scholar] [CrossRef]
- Ji, Y.; Qian, W.; An, Q.; Huang, S.; Lee, K.; Gao, C.J. Mussel-inspired zwitterionic dopamine nanoparticles as building blocks for constructing salt selective nanocomposite membranes. J. Membr. Sci. 2019, 572, 140–151. [Google Scholar] [CrossRef]
- Wu, C.; Wang, H.; Wei, Z.; Li, C.; Luo, Z.D. Polydopamine-mediated surface functionalization of electrospun nanofibrous membranes: Preparation, characterization and their adsorption properties towards heavy metal ions. Appl. Surface Sci. 2015, 346, 207–215. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, L.; Li, X.; Xu, Y.; Zhu, B.K. Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. J. Membr. Sci. 2010, 364, 194–202. [Google Scholar] [CrossRef]
- Zin, G.; Wu, J.; Rezzadoria, K.; Petrusa, J.C.C.; Luccioa, M.D.; Li, Q.L. Modification of hydrophobic commercial PVDF microfiltration membranes into superhydrophilic membranes by the mussel-inspired method with dopamine and polyethyleneimine. Sep. Purif. Technol. 2019, 212, 641–649. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, K.; Du, X.; Yang, J. Synthesis of polydopamine-mediated PP hollow fibrous membranes with good hydrophilicity and antifouling properties. J. Appl. Polym. Sci. 2017, 134, 44430. [Google Scholar] [CrossRef]
- Shi, H.; Xue, L.; Gao, A.; Fu, Y.; Zhou, Q.; Zhu, L. Fouling-resistant and adhesion-resistant surface modification of dual layer PVDF hollow fiber membrane by dopamine and quaternary polyethyleneimine. J. Membr. Sci. 2016, 498, 39–47. [Google Scholar] [CrossRef]
- Jin, J.; Liu, D.; Zhang, D.; Yin, Y.; Zhao, X.; Zhang, Y. Preparation of thin-film composite nanofiltration membranes with improved antifouling property and flux using 2,2′-oxybis-ethylamine. Desalination 2015, 355, 141–146. [Google Scholar] [CrossRef]
Membranes | Atomic Percent (mol %) | Atomic Ratio | |||
---|---|---|---|---|---|
C | O | N | S | O/N | |
PSF | 72.61 | 18.45 | 3.51 | 2.7 | 5.26 |
PSF-PDA/PEI | 70.97 | 19.55 | 7.83 | 1.64 | 2.50 |
PSF-diol | 67.07 | 23.45 | 8.47 | 1 | 2.77 |
Membrane | Langmuir Constants | Freundlich Constants | ||||
---|---|---|---|---|---|---|
qmax (mmol/g) | b (L/mmol) | R2 | Kf (mmol/g) | 1/n | R2 | |
PSF-diol | 1.64 | 0.07 | 0.9322 | 0.49 | 0.20 | 0.8452 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, J.; Du, X.; Yu, J.; Qin, S.; He, M.; Zhang, K.; Yang, J. Synthesis of Negatively Charged Polyol-Functional PSF Membranes with Good Hydrophilic and Efficient Boron Removal Properties. Polymers 2019, 11, 780. https://doi.org/10.3390/polym11050780
Jin J, Du X, Yu J, Qin S, He M, Zhang K, Yang J. Synthesis of Negatively Charged Polyol-Functional PSF Membranes with Good Hydrophilic and Efficient Boron Removal Properties. Polymers. 2019; 11(5):780. https://doi.org/10.3390/polym11050780
Chicago/Turabian StyleJin, Jinbo, Xilan Du, Jie Yu, Shuhao Qin, Min He, Kaizhou Zhang, and Jingkui Yang. 2019. "Synthesis of Negatively Charged Polyol-Functional PSF Membranes with Good Hydrophilic and Efficient Boron Removal Properties" Polymers 11, no. 5: 780. https://doi.org/10.3390/polym11050780
APA StyleJin, J., Du, X., Yu, J., Qin, S., He, M., Zhang, K., & Yang, J. (2019). Synthesis of Negatively Charged Polyol-Functional PSF Membranes with Good Hydrophilic and Efficient Boron Removal Properties. Polymers, 11(5), 780. https://doi.org/10.3390/polym11050780