Toughening and Enhancing Melamine–Urea–Formaldehyde Resin Properties via in situ Polymerization of Dialdehyde Starch and Microphase Separation
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Synthesis and Preperation
2.2.1. Synthesis of Neat and DAS Modified MUF Resins
2.2.2. Preparation of Plywood
2.3. Measurement
2.3.1. Physical Properties of Resin
2.3.2. Fourier Transform Infrared (FTIR) Spectroscopy
2.3.3. 13C Nuclear Magnetic Resonance (NMR) Spectroscopy
2.3.4. X-ray Diffraction (XRD) Analysis
2.3.5. Differential scanning calorimetry (DSC) analysis
2.3.6. Scanning Electron Microscope (SEM) Analysis
2.3.7. Mechanical Properties Test
2.3.8. Wet shear Strength of Plywood
2.3.9. Formaldehyde Emission of Plywood
3. Results and Discussion
3.1. Physical Properties of Resin
3.2. Polymerization of DAS and MUF Resin
3.3. Curing of DAS-Modified MUF Resin
3.4. Thermal Stability of DAS-Modified MUF Resin
3.5. Microphase Separation of DAS-Modified MUF Resin
3.6. Toughening and Enhancing of DAS-Modified MUF Resin
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fan, D.-B.; Li, J.-Z.; Chang, J.-M. On the structure and cure acceleration of phenol–urea–formaldehyde resins with different catalysts. Eur. Polym. J. 2009, 45, 2849–2857. [Google Scholar] [CrossRef]
- No, B.Y.; Kim, M.G. Syntheses and properties of low-level melamine-modified urea-melamine-formaldehyde resins. J. Appl. Polym. Sci. 2004, 93, 2559–2569. [Google Scholar] [CrossRef]
- Stoeckel, F.; Konnerth, J.; Gindl-Altmutter, W. Mechanical properties of adhesives for bonding wood—A review. Int. J. Adhes. Adhes. 2013, 45, 32–41. [Google Scholar] [CrossRef]
- Ebewele, R.O.; Myers, G.E.; River, B.H.; Koutsky, J.A. Polyamine-modified urea-formaldehyde resins. I. Synthesis, structure, and properties. J. Appl. Polym. 1991, 42, 2997–3012. [Google Scholar] [CrossRef]
- Ebewele, R.O.; River, B.H.; Myers, G.E.; Koutsky, J.A. Polyamine-modified urea-formaldehyde resins. II. Resistance to stress induced by moisture cycling of solid wood joints and particleboard. J. Appl. Polym. Sci. 1991, 43, 1483–1490. [Google Scholar] [CrossRef]
- Gopala, A.; Wu, H.; Harris, F.; Heiden, P. Investigation of readily processable thermoplastic-toughened thermosets. I. BMIs toughened via a reactive solvent approach. J. Appl. Polym. Sci. 1998, 69, 469–477. [Google Scholar] [CrossRef]
- Huang, Y.; Hunston, D.L. Mechanisms of Toughening Thermoset Resins. In Toughened Plastics I, Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1993; Volume 233, pp. 1–35. [Google Scholar]
- Das, S.; Matuana, L.M.; Heiden, P. Thermoplastic polymers as modifiers for urea–formaldehyde wood adhesives. III. In situ thermoplastic-modified wood composites. J. Appl. Polym. Sci. 2008, 107, 3200–3211. [Google Scholar] [CrossRef]
- Carlborn, K.; Matuana, L.M.; Heiden, P.A.; Kim, J.-W.; Kim, J. Thermoplastic modification of urea–formaldehyde wood adhesives to improve moisture resistance. J. Appl. Polym. Sci. 2006, 101, 4222–4229. [Google Scholar]
- Taha, A.A.; Magida, M.M.; Shehata, E.M. The use of gamma irradiation to induce the miscibility between urea-formaldehyde and vinyl acetate versatic ester copolymer latex blend. J. Appl. Polym. Sci. 2012, 126, 1822–1829. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, X.; Ye, L. Structure and properties of urea-formaldehyde resin/polyurethane blend prepared via in-situ polymerization. RSC Adv. 2015, 5, 53700–53707. [Google Scholar] [CrossRef]
- Shen, Y.; Gu, J.; Tan, H.; Lv, S.; Zhang, Y. Preparation and properties of a polyvinyl alcohol toughened urea-formaldehyde foam for thermal insulation applications. Constr. Build. Mater. 2016, 120, 104–111. [Google Scholar] [CrossRef]
- Singha, A.S.; Thakur, V.K. Synthesis and characterization of short Grewia optiva fiber-based polymer composites. Polym. Compos. 2010, 31, 459–470. [Google Scholar] [CrossRef]
- Veigel, S.; Rathke, J.; Weigl, M.; Gindl-Altmutter, W. Particle Board and Oriented Strand Board Prepared with Nanocellulose-Reinforced Adhesive. J. Nanomater. 2012, 2012, 15. [Google Scholar] [CrossRef]
- Kwon, J.H.; Lee, S.-H.; Ayrilmis, N.; Han, T.H. Tensile shear strength of wood bonded with urea–formaldehyde with different amounts of microfibrillated cellulose. Int. J. Adhes. Adhes. 2015, 60, 88–91. [Google Scholar] [CrossRef]
- Park, B.-D.; Ayrilmis, N.; Kwon, J.H.; Han, T.H. Effect of microfibrillated cellulose addition on thermal properties of three grades of urea-formaldehyde resin. Int. J. Adhes. Adhes. 2017, 72, 75–79. [Google Scholar] [CrossRef]
- Wang, H.; Liang, J.; Zhang, J.; Zhou, X.; Du, G. Performance of urea-formaldehyde adhesive with oxidized starch. Bioresources 2017, 12, 7590–7600. [Google Scholar] [CrossRef]
- Li, P.; Wu, Y.; Liu, W.; Zuo, Y.; Jianxiong Lü, R.T. Preparation of Resorcinol-Dialdehyde Starch-Formaldehyde Copolycondensation Resin Adhesive. Polym. Mater. Sci. Eng. 2019, 35, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chang, P.R.; Ma, X. The preparation and properties of dialdehyde starch and thermoplastic dialdehyde starch. Carbohydr. Polym. 2010, 79, 296–300. [Google Scholar] [CrossRef]
- Rodrigues, A.; Emeje, M. Recent applications of starch derivatives in nanodrug delivery. Carbohydr. Polym. 2012, 87, 987–994. [Google Scholar] [CrossRef]
- Haroon, M.; Wang, L.; Yu, H.; Abbasi, N.M.; Zain-ul-Abdin; Saleem, M.; Khan, R.U.; Ullah, R.S.; Chena, Q.; Jialiang, W. Chemical modification of starch and its application as an adsorbent material. RSC Adv. 2016, 6, 78264–78285. [Google Scholar] [CrossRef]
- Testing Methods for Wood Adhesives and Their Resins; Standardization Administration of the People’s Republic of China: Beijing, China, 2013.
- Poletto, M.; Zattera, A.J.; Forte, M.M.; Santana, R.M. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresour. Technol. 2012, 109, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, C.; Zheng, J.; Lu, M. Crystallization behavior of stable urea formaldehyde resin dispersed by polyvinyl alcohol. Iranian Polym. J. 2015, 24, 13–20. [Google Scholar] [CrossRef]
- Testing Methods of Evaluating the Properties of Wood-Based Panels and Surface Decorated Wood-Based Panels; Standardization Administration of the People’s Republic of China: Beijing, China, 2013.
- Despres, A.; Pizzi, A. Colloidal aggregation of aminoplastic polycondensation resins: Urea–formaldehyde versus melamine–formaldehyde and melamine–urea–formaldehyde resins. J. Appl. Polym. Sci. 2006, 100, 1406–1412. [Google Scholar] [CrossRef]
- Fang, J. The preparation and characterisation of a series of chemically modified potato starches. Carbohydr. Polym. 2002, 47, 245–252. [Google Scholar] [CrossRef]
- Zorba, T.; Papadopoulou, E.; Hatjiissaak, A.; Paraskevopoulos, K.M.; Chrissafis, K. Urea-formaldehyde resins characterized by thermal analysis and FTIR method. J. Therm. Anal. Calorim. 2008, 92, 29–33. [Google Scholar] [CrossRef]
- Park, B.-D.; Kim, Y.S.; Singh, A.P.; Lim, K.P. Reactivity, chemical structure, and molecular mobility of urea–formaldehyde adhesives synthesized under different conditions using FTIR and solid-state 13C CP/MAS NMR spectroscopy. J. Appl. Polym. Sci. 2003, 88, 2677–2687. [Google Scholar] [CrossRef]
- Sun, Q.-N.; Hse, C.-Y.; Shupe, T.F. Characterization and Performance of Melamine Enhanced Urea Formaldehyde Resin for Bonding Southern Pine Particleboard. J. Appl. Polym. Sci. 2011, 119, 3538–3543. [Google Scholar] [CrossRef]
- Fiedorowicz, M.; Para, A. Structural and molecular properties of dialdehyde starch. Carbohydr. Polym. 2006, 63, 360–366. [Google Scholar] [CrossRef]
- Siimer, K.; Kaljuvee, T.; Christjanson, P. Thermal behaviour of urea-formaldehyde resins during curing. J. Therm. Anal. Calorim. 2003, 72, 607–617. [Google Scholar] [CrossRef]
Resin | Solid Content (%) | Viscosity (mPa.s) | Curing Time (s) |
---|---|---|---|
MUF | 49.67 ± 0.16 | 25.9 ± 2.2 | 161 ± 4 |
1%DAS/MUF | 50.24 ± 0.14 | 40.5 ± 2.1 | 155 ± 5 |
3%DAS/MUF | 51.33 ± 0.10 | 53.6 ± 2.0 | 124 ± 2 |
5%DAS/MUF | 52.44 ± 0.13 | 60.3 ± 2.7 | 119 ± 5 |
7%DAS/MUF | 53.02 ± 0.15 | 70.6 ± 2.4 | 112 ± 2 |
Groups | Shift (ppm) | Resins | ||||
---|---|---|---|---|---|---|
MUF (%) | 1%DAS/MUF (%) | 3%DAS/MUF (%) | 5%DAS/MUF (%) | 7%DAS/MUF (%) | ||
Total hydroxylmethyl | 69.50 | 76.98 | 78.56 | 80.57 | 80.98 | |
Type I | 64.3 | 65.67 | 69.89 | 69.81 | 70.09 | 71.29 |
Type II | 70.6 | 3.83 | 7.09 | 8.75 | 10.48 | 9.69 |
Total methylene | 13.08 | -- | -- | -- | -- | |
Type I | 47.1 | 7.27 | -- | -- | -- | -- |
Type II | 53.9 | 1.45 | -- | -- | -- | -- |
Type III | 55.6 | 4.36 | -- | -- | -- | -- |
Total methylene ether | 16.26 | 20.8 | 19.06 | 18.36 | 17.36 | |
Type I | 69.3 | 13.46 | 11.22 | 13.08 | 12.08 | 13.11 |
Type II | 75.2 | 1.78 | 3.26 | 2.29 | 0.98 | 0.52 |
Type III | 78.5 | 1.02 | 6.32 | 3.69 | 4.30 | 3.73 |
free formaldehyde | 82.9 | 1.16 | 2.22 | 2.38 | 2.07 | 1.66 |
Total CH2 | 100 | 100 | 100 | 100 | 100 | |
Free urea | 161.9 | 33.10 | 6.88 | 5.58 | 5.18 | 3.27 |
Mono-substituted urea | 160.3 | 43.03 | 24.58 | 24.91 | 27.92 | 29.27 |
Di, tri-substituted urea | 158.9 | 23.86 | 65.32 | 67.19 | 64.68 | 64.82 |
Cyclic urea | 155 | -- | 3.23 | 2.32 | 2.21 | 2.64 |
Total urea | 100 | 100 | 100 | 100 | 100 | |
Free melamine | 167.8 | -- | -- | -- | -- | -- |
Substituted melamine | 166.5 | 100 | 100 | 100 | 100 | 100 |
Total melamine | 100 | 100 | 100 | 100 | 100 |
Adhesive (Water/Egg White) | Mass Loss | RW (%) at 450 °C | ||
---|---|---|---|---|
Stage I | Stage II | Stage III | ||
MUF | 5.32 | 54.29 | 17.90 | 22.48 |
1%DAS/MUF | 5.33 | 53.01 | 16.52 | 25.13 |
3%DAS/MUF | 5.06 | 52.60 | 15.84 | 26.49 |
5%DAS/MUF | 5.02 | 52.54 | 18.17 | 24.27 |
7%DAS/MUF | 5.81 | 50.49 | 13.88 | 29.81 |
Resin | Ts (MPa) | E (%) |
---|---|---|
MUF | 17.21 ± 2.33 | 1.33 ± 0.42 |
1%DAS/MUF | 22.94 ± 1.79 | 1.79 ± 0.33 |
3%DAS/MUF | 30.11 ± 2.36 | 1.97 ± 0.56 |
5%DAS/MUF | 29.28 ± 1.58 | 2.22 ± 0.54 |
7%DAS/MUF | 31.05 ± 2.02 | 2.34 ± 0.61 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Zhang, J.; Gao, Q.; Mao, A.; Li, J. Toughening and Enhancing Melamine–Urea–Formaldehyde Resin Properties via in situ Polymerization of Dialdehyde Starch and Microphase Separation. Polymers 2019, 11, 1167. https://doi.org/10.3390/polym11071167
Luo J, Zhang J, Gao Q, Mao A, Li J. Toughening and Enhancing Melamine–Urea–Formaldehyde Resin Properties via in situ Polymerization of Dialdehyde Starch and Microphase Separation. Polymers. 2019; 11(7):1167. https://doi.org/10.3390/polym11071167
Chicago/Turabian StyleLuo, Jianlin, Jieyu Zhang, Qiang Gao, An Mao, and Jianzhang Li. 2019. "Toughening and Enhancing Melamine–Urea–Formaldehyde Resin Properties via in situ Polymerization of Dialdehyde Starch and Microphase Separation" Polymers 11, no. 7: 1167. https://doi.org/10.3390/polym11071167
APA StyleLuo, J., Zhang, J., Gao, Q., Mao, A., & Li, J. (2019). Toughening and Enhancing Melamine–Urea–Formaldehyde Resin Properties via in situ Polymerization of Dialdehyde Starch and Microphase Separation. Polymers, 11(7), 1167. https://doi.org/10.3390/polym11071167