3.2. Thickness and Density of Plywood Panels
The aim of the veneer thickness measurement was to find effects of the different conditions of pressing on the tolerance of a pressed plywood panel. In the case of using HDPE film as adhesive in the production of plywood, it is very important to choose the pressing parameters so that the thickness of finished plywood is within acceptable limits, to avoid unnecessary losses of wood raw material. The average values of the thickness, density, and moisture content of plywood samples, as well as the compression ratio, are given in
Table 4.
ANOVA analysis showed that the temperature, pressure, and time of the hot pressing, as well as the type of adhesive used, significantly affects the thickness and density of the HDPE-bonded plywood panels. It can be seen that the average thickness of HDPE-bonded plywood panels made at different hot-pressing temperatures, pressures, and times is not smaller but even exceeds the thickness of control plywood using UF and PF adhesives (
Table 4), which is essential for the industrial application of this technology. The smallest thickness (3.99 mm) and the highest density (619.1 kg/m
3) had plywood samples made using PF adhesive. The largest thickness (4.70 mm) and the smallest density (536.8 kg/m
3) had plywood samples made using HDPE film. Primarily, this can be explained by the high hot-pressing pressures of plywood samples and the increased adhesive dosage in the case of using UF and PF adhesives.
As the time of the hot pressing increases from 1 to 3 min, the thickness of the plywood samples decreases at temperatures of 140 and 180 °C, and increases at a temperature of 160 °C (
Figure 2). This is because at a higher hot-pressing temperature and longer time of pressing, the wood becomes more plastic and more easily compressed. The difference in thickness values of plywood samples pressed for 1 and 2 min was insignificant (
P ≤ 0.05) based on Duncan’s test. Of course, if the thickness of the plywood samples decreases with the increase in temperature and time of pressing, then it is natural that the density of such samples, in contrast, increases (
Figure 2). It was found that differences in density values of the panels pressed at temperatures of 160 and 180 °C for 2 and 3 min were insignificant (
P ≤ 0.05) based on Duncan’s test. Nevertheless, according to the
F values (
Table 2), it can be seen that, in the ranking from highest to lowest, the hot-pressing temperature has the greatest influence on the thickness and density of the plywood samples, after that an interaction of hot-pressing temperature and hot-pressing time and finally hot-pressing time.
The hot-pressing pressure also significantly influences the thickness and density of plywood samples. With an increase in pressing pressure from 0.8 to 1.6 MPa, the thickness of the plywood samples decreases by 6.0%, and the density of samples increases by 7.6% (
Figure 2). Between the pressures of 0.8 and 1.2 MPa there is no significant difference (
P ≤ 0.05) based on Duncan’s test in the effect on the density and thickness of the plywood samples.
Nevertheless, plywood panels containing HDPE film were pressed at a lower pressure than the control panels (
Table 1). In this case, the average compression ratio of plywood made using HDPE film was smaller—5.4, 3.04, and 8.05%, respectively, for 0.8, 1.2, and 1.6 MPa compared with the compression ratio of 8.5 and 13.5% for control UF and PF plywood, respectively. Moreover, plywood containing HDPE film was manufactured with 19% less adhesive spread than the adhesive spread used for the control panels. In addition, its compression ratio will be smaller because less moisture was brought with the adhesive into the veneer package, and such package, in turn, is less densified (wood is deformed more heavily).
The European Standard EN 315 [
40] specifies tolerances of unsanded plywood panels for a nominal thickness of 4 mm as −0.4 mm (min) and +0.8 mm (max); i.e., the thickness of the finished unsanded plywood panels should be in the range 3.6–4.8 mm. In this study, the values of plywood thicknesses were 4.23 ± 0.04 mm and 3.99 ± 0.05 mm for panels made using UF and PF adhesives, respectively, and 4.37 (± 0.02)–4.70 (± 0.01) mm for panels made using HDPE film (
Table 4), and they did not go beyond tolerances for unsanded panels in accordance with this standard.
3.3. Shear Strength
Average values of the dry and wet shear strength of plywood panels are presented in
Table 5. The quality of the bonding of the thermoplastic adhesive and the wood surface depends on the processing details of the adhesive bonding, such as the porosity of the wood surface, the viscosity of the molten adhesive, the applied pressure, and the processing duration [
41].
Figure 3 shows the effects of pressing temperature and time on the shear strength of plywood samples. The obtained strength ranged from 0.74 to 2.38 MPa, practically all of which met the European Standard EN 314-2 [
38] for Class 1 (dry conditions) plywood. In this study, the bonding strength mean values obtained from the samples of HDPE-bonded plywood panels were above the limit value (1.0 MPa) indicated in the European Standard EN 314-2 [
38] standard. HDPE-bonded plywood panels produced using 140 °C and 1–2 min and 160 °C and 1 min did not meet the European Standard EN 314-2 [
38].
At the low temperature of 140 °C and short-term pressing time 1–2 min, the flow of HDPE is very poor; HDPE cannot permeate adequately into the vessels and cracks of veneers, resulting in worse strength. In other work [
7], it was also found that lower temperatures did not promote an adequate melting of the HDPE. On the other hand, when the plywood samples were pressed at 140 °C for 3 min the result was better. de Barros Lustosa et al. [
7] observed a similar trend in their study.
With increasing hot-pressing temperature from 140 to 180 °C, the shear strength of the plywood samples increased by 37.8, 127.3 and 33.9%, respectively, for pressing times of 1 min, 2 min and 3 min. This can be explained by the fact that with increasing hot-pressing temperature, more HDPE can permeate adequately into the vessels and cracks of veneers and help to enhance the bonding strength [
19]. It is known that the viscosity of plastic film decreases with increasing temperatures [
12,
13]. This suggests that high temperatures contribute to the melting of HDPE film, which provides better fluidity, which allows for polyethylene to be more evenly distributed. In turn, this creates better conditions for the penetration of molten polyethylene into the veneer cavities and accordingly creates better conditions for the formation of mechanical locks. Accordingly, this contributes to the increase in the shear strength. Furthermore, a higher hot-pressing temperature can also decrease the proportion of hydrophilic groups in wood, thus enhancing the interfacial compatibility between hydrophilic wood and hydrophobic plastic film [
25,
27]. This tendency is true for the pressing time of 1–3 min. If the pressing time was increased to 5 min, then a drop in shear strength was observed with an increase in the temperature from 160 to 180 °C. Chang et al. [
19] also observed that temperatures higher than 160 °C made the mechanical interlock worse and gave poorer strength to the plywood. It is obvious that at high temperature and prolonged pressing time (
Figure 3), the polyethylene film is subjected to decomposition and fracturing, so that the rate of increase in the bond strength decreased.
At both temperatures, 160 and 180 °C, high strength values were obtained that exceed the minimum value according to the European Standard EN 314-2 [
38]. Taking into account the energy consumed, the hot-pressing temperature of 160 °C was more economical. The highest shear strength was achieved at 160 °C when the pressing time was increased to 3 min. The smallest shear strength was achieved at 140 °C and the pressing time 1–2 min.
These results are in agreement with a study carried out by Cui et al. [
11]. In this cited study, by increasing hot-pressing temperature, the bonding strength of plywood indicated a clear upward trend and then declined.
Hot-pressing time had a significant impact on the shear strength of plywood samples. Too short pressing time is insufficient for good adhesive penetration [
16]. The time used should be enough for heating the inner areas of the plywood samples allowing the melting of the HDPE and the drying of the wood veneer at the same time [
7]. Increasing the pressing time from 1 to 3 min leads to increased shear strength. The subsequent increase in pressing time to 5 min leads to increasing the time for production and decreasing the shear strength. This can be explained by the fact that after hot pressing for 5 min, the HDPE film was completely melted, and the thickness of the film could be reduced if the pressing time was longer than 3 min because part of the film was melted and flew out from the plywood, resulting in a lack of polyethylene film and, finally, the shear strength of plywood samples decreases. Moreover, with long-term hot pressing, the molten plastic film penetrated into the wood and, consequently, caused a decrease in the shear strength of plywood. Therefore, the hot pressing could not also be so long as to prevent thermal degradation of the wood veneer [
7], decomposition and fracturing of the HDPE film. At the various hot-pressing pressures and temperatures, the highest shear strength values are observed for the pressing time of 3 min. A similar trend in the impact of pressing time on the properties of plywood is described in the work [
11]. They concluded that the optimal parameters were a plastic use of 100 g/m
2, a hot-pressing temperature of 150 °C, and a hot-pressing time of 6 min.
The pressure also played an important role because it is responsible for providing close contact between both materials and helping the flow of the HDPE into voids and irregularities of the wood veneer [
7]. Therefore, high pressure is recommended for enhancement of adhesion properties with veneer [
19]. In our study, with increasing pressing pressure from 0.8 to 1.6 MPa (at 160 °C and time 3 min), the shear strength decreased by 27.7%. This can be explained by the fact that with increasing the hot-pressing pressure, the more molten HDPE film was pressed into the vessels and cracks in the veneer, but less remains between the sheets of the veneer, reducing the bonding strength. Chang et al. [
19] also found that when the hot-pressing pressure increased up to 1.3 MPa, the strength decreased. This phenomenon they ascribe to the fact that, with the increase in hot-pressing pressure, the ejection of HDPE resin from vessels and cracks occurs. Thus, unlike liquid adhesives such as UF and PF, the use of which requires high pressing pressure, the use of polyethylene film allows the bonding of plywood panels at significantly lower pressure (by about 50%).
The findings of our work are in good agreement with the results obtained by Smith et al. [
41]. They also found that processes that kept the polypropylene molten at the surface of the wood for a longer time, higher temperature, and higher pressure achieved much better interlocking than the short process cycle.
To confirm the above-described processes of the melting and flowing of HDPE film during the hot-pressing operation, measurements of the temperature inside the veneer package for different types of adhesive used and different pressing conditions were made.
Figure 4 shows the temperature distribution inside the veneer package during the hot pressing of plywood samples for different types of adhesive used and different pressing conditions. The most slowly warmed up veneer package was the case of the manufacturing of plywood at a pressing temperature of 105 °C using UF adhesive. The temperature of 100 °C inside the veneer package is reached in 50 s from the start of pressing. The veneer package with the use of PF adhesive in which pressing is carried out already at a higher temperature of 145 °C warmed up faster. The temperature of 100 °C inside the veneer package was reached in 14 s, which is almost 3.5 times faster than in the case of pressing UF plywood. The main factor determining the speed of heating the veneer package with HDPE film is the pressing temperature. The melting temperature of the HDPE film is 135 °C. Such temperature is achieved inside the veneer package in 90, 56, and 34 s at pressing temperatures of 140, 160, and 180 °C, respectively. With the increase in the pressing temperature, the heating rate of the veneer package increases. This has an effect on the bonding strength of plywood using HDPE film. From
Figure 3 and
Table 5, it can be seen that the temperature of 140 °C and the pressing time of 1 and 2 min are insufficient to warm the package, to melt the plastic film, and to allow it to flow over the surface of the veneer sheet. At a temperature of 140 °C, the film’s fluidity is insufficient to move inside the pores of the wood and to form mechanical adhesive bonds, which adversely affects the bonding strength (
Figure 3,
Table 5). For temperatures of 160 and 180 °C, the pressing time of 1 min is also undesirable because the bonding strength is practically equal to the permissible value of 1.0 MPa in accordance with European Standard EN 314-2 [
38].
Figure 5 shows microscopic images of alder veneer bonded with HDPE film. In the plywood samples prepared at 140 °C and a pressing time of 1 min, a bondline was observed between the adjacent two veneers, indicating that the penetration of HDPE films into the veneer surfaces was not desirable, which could easily cause the delamination of HDPE films from the veneer surfaces (
Figure 5a). This image clearly indicates the lack of chemical bonds between the plastic film and wood substance because the HDPE film could be easily separated mechanically from the wood after a short immersion in water. This was an indication of poor adhesion of the HDPE film to the wood surface. The lack of chemical bonds between the plastic films and the surface of wood are also indicated by other authors [
13,
15,
19,
32,
41]. Therefore, the plywood samples prepared using 140 °C and a pressing time of 1 min had the lowest shear strength in
Figure 3 and
Table 5.
In the plywood samples prepared using higher temperatures of 160 and 180 °C and a longer pressing time of 2–3 min, the penetration of HDPE films into the veneer surfaces was better (
Figure 5b) than that in the samples prepared using 140 °C and a pressing time of 1 min. It can be seen that HDPE film flowed and penetrated into the vessels of wood veneer during the hot-pressing stage, forming a continuous bondline and mechanical interlock structure (
Figure 5b). The better penetration produces stronger bonded joints in the samples. Therefore, the plywood samples prepared at 160 °C and a pressing time of 3 min had the highest shear strength in
Table 5.
In another study [
32], it was also shown that the polypropylene melted during hot pressing and made good contact with veneer surfaces penetrating into the lumina of wood cells, lathe checks, and other spaces open on the veneer surface. These authors indicated that the anchoring effect of polypropylene, which had penetrated into various wood elements and spaces in the veneer, contributed dominantly to the gluability [
32]. Therefore, because wood is a porous material, a mechanical interlock is the most likely bonding mechanism involved [
13,
15,
19,
32,
41].
3.4. Bending Strength and Modulus of Elasticity in Bending
The average values of the bending strength and modulus of elasticity (MOE) in the bending of plywood samples are presented in
Table 6.
The temperature, pressure, and time of hot pressing significantly (
P ≤ 0.05) affect the bending strength in both parallel MOR (‖) and perpendicular MOR (ꓕ) directions of HDPE-bonded plywood samples (
Table 2). With an increase in the pressing temperature from 140 to 180 °C and pressing time from 1 to 3 min, MOR (‖) and MOR (ꓕ) increased by 304.1 and 3.8% and 14.9 and 0.5%, respectively (
Figure 6). For a pressing time of 2 min with an increase in the pressing temperature from 140 to 180 °C, MOR (‖) increased and MOR (ꓕ) decreased by 2.3 and 9.4%, respectively. As can be seen from
Table 6, MOR (‖) values exceed the MOR (ꓕ) values by a factor of more than five, except the pressing conditions of 140 °C and 1 min. A similar trend can also be observed in the case of increasing the pressing time from 1 to 3 min (
Figure 6). In this case, the MOR (‖) and MOR (ꓕ) increased by 318.0, 11.2, and 7.3% and 18.9, 11.9, and 4.0%, respectively, for pressing temperatures of 140, 160 and 180 °C. The differences in the values of MOR (‖) and MOR (ꓕ) for the temperatures of 160 and 180 °C are insignificant. Therefore, from an economic point of view, it is more expedient to hot-press at a temperature of 160 °C. The smallest value of MOR (‖) was obtained at a hot-press pressure of 1.2 MPa (113.4 MPa), and the highest values of MOR (‖) were obtained at 0.8 MPa (119.3 MPa) and 1.6 MPa (119.9 MPa) (
Table 6). The difference in the values of MOR (‖) for the pressures of 0.8 and 1.6 MPa is insignificant. With increasing pressing pressure from 0.8 to 1.6 MPa, the value of MOR (ꓕ) increased by 8.9%. The difference in the values of MOR (ꓕ) for the pressures of 0.8 and 1.2 MPa is insignificant.
The temperature, pressure, and time of hot pressing also significantly (
P ≤ 0.05) affect the MOE in bending in both parallel MOE (‖) and perpendicular MOE (ꓕ) directions of HDPE-bonded plywood samples (
Table 2). With an increase in the pressing temperature from 140 to 180 °C and pressing time from 1 to 3 min, the values of MOE (‖) and MOE (ꓕ) increased by 44.9, 3.2, and 4.1% and 12.4, 1.9, and 4.8% (reduction), respectively (
Figure 7). With increasing the pressing time from 1 to 2 min, MOE (‖) values initially increased, and further increase in the pressing time to 3 min led to a decrease in MOE (‖) (
Figure 7). The values of MOE (ꓕ) increased by 6.2–7.8% with an increase in the pressing time from 1 to 3 min. In addition, the difference in the values of MOR (ꓕ) for the pressing times of 2 and 3 min is insignificant.
With increasing hot-pressing pressure from 0.8 to 1.6 MPa, the values of MOE (‖) increased by 7%. The difference in the values of MOE (‖) for the pressing pressures 0.8 and 1.2 MPa is insignificant. The lowest values of MOE (ꓕ) were observed at a pressing pressure of 1.2 MPa (826.4 MPa), and the highest at a pressure of 1.6 MPa (923.8 MPa) (
Table 6).
It has been established that the type of adhesive also significantly (
P ≤ 0.05) affects the mechanical properties of plywood samples, MOR (‖) and MOR (ꓕ), MOE (‖) and MOE (ꓕ) (
Table 2). The highest MOR (‖) and MOR (ꓕ) values were obtained for PF adhesive (134.6 and 25.9 MPa, respectively), followed by UF adhesive (119.8 and 22.7 MPa, respectively) and HDPE film (103.6 and 20.5 MPa, respectively) (
Table 6,
Figure 8). The lowest MOE (‖) and MOE (ꓕ) values were recorded for PF adhesive (7698.9 and 748.6 MPa, respectively) and UF adhesive (8228.2 and 775.2 MPa, respectively), and the highest for HDPE films (9702.9 and 873.6 MPa, respectively) (
Table 6,
Figure 8). The differences in the values of MOE (‖) and MOE (ꓕ) for the UF and PF adhesives are insignificant.
The effect of adhesive could be explained by the quite different properties between thermoplastic (HDPE) and thermoset (UF and PF) polymers. HDPE is a well-known thermoplastic material, because of the inherent molecular structure the thermoplastic polymers are more plastic and show higher toughness than thermosets [
20].
Another study stated that the average mechanical properties of polystyrene-bonded plywood panels tend to increase when the pressing time and temperature are increased during production [
16].
Mean values obtained for bending strength and MOE of plywood panels were higher than the limit values for structural purpose solid wood panels (32 MPa for MOR (‖) and 5 MPa for MOR (ꓕ), 9000 MPa for MOE (‖) and 600 MPa for MOE (ꓕ)) indicated in European Standard EN 13353 [
42] for panels having thicknesses up to 20 mm.
The bending strength and MOE values of HDPE-bonded plywood panels were (
Table 6):
- -
26.7–119.9 MPa and 6996.2–10,307.7 MPa, respectively, when parallel to the grain direction;
- -
17.5–24.5 MPa and 796.8–923.8 MPa, respectively, when perpendicular to the grain direction.
In all specimens, the determined bending strength and MOE values perpendicular to the grain direction were higher than the lower limiting value of 5 and 600 MPa, respectively. The plywood panels produced at 140 °C and 1 min had the smallest bending strength (MOR (‖) and MOE (‖)) values in
Table 6 and did not meet the European Standard EN 13353 [
42]. These panels had the least maximum load to failure, 188.9 N on average, and the least deflection to failure at 1.92 mm. As can be seen from
Figure 9, the generated delamination crack longitudinally extended through the sample and this significantly reduced the maximum failure load. This can diminish the bending strength of plywood. As was shown above, the shear strength values of plywood samples bonded at the hot-pressing temperature of 140 °C and pressing time of 1 min were also the smallest.
3.5. Thickness Swelling and Water Absorption
The average values of TS and WA of plywood samples are given in
Table 7.
The pressing temperature and time insignificantly (
P ≤ 0.05) affect the TS of the HDPE-bonded plywood samples (
Table 3). The smallest TS was observed at a pressing time of 2 min, and the difference in the values of TS for the pressing times of 1 and 3 min was insignificant. With increasing time of soaking, the TS increases (
Table 7). The smallest TS was observed during soaking for 2 h, and then the TS is increased by 42.7–46.5%. The differences in the values of TS for the time of soaking 24, 48, and 72 h were insignificant.
The pressing pressure significantly (
P ≤ 0.05) affects the TS of HDPE-bonded plywood samples (
Table 3). With increasing pressing pressure from 0.8 to 1.6 MPa, the values of TS increased by 17.7%. The difference in the values of TS for the pressing pressures 0.8 and 1.2 MPa was insignificant.
The type of adhesive had a significant (
P ≤ 0.05) effect on TS (
Table 3). The smallest value of TS was observed in plywood samples using HDPE film (8.11%), the higher value in samples using UF adhesive (8.70%) and the highest value in samples using PF adhesive (11.09%) (
Table 7). This was attributed to the hydrophobic character of the plastic film. This result was also associated with the hot-pressing condition. A higher hot-pressing temperature for wood-based composites can reduce hydrophilic groups in raw materials, which contributes to reducing the water absorption and the TS of plywood panels [
25,
27]. In this research, the hot-pressing temperature of HDPE-bonded plywood samples was higher than PF-bonded samples, while the hot-pressing temperature of PF-bonded samples was higher than that of UF-bonded samples.
The temperature and time of hot pressing significantly affect the WA of HDPE-bonded plywood samples (
Table 3). The lowest values of WA were found at 160 °C (56.03%), and higher values were obtained at temperatures of 140 and 180 °C (58.5% and 57.3%, respectively) (
Table 7). The difference in the values of WA for the pressing temperatures of 140 and 180 °C was insignificant. The smaller value of WA was observed at the pressing time of 3 min (56.5%), and higher value at a pressing time of 1 min (58.3%). The difference in the values of WA for the pressing time of 2 and 3 min was insignificant. With increasing time of soaking in water from 2 to 72 h, the WA gradually increased by 68.3%. The largest increase in WA occurs during the first 2 h of soaking in water.
The pressing pressure affects WA insignificantly (
Table 3). The type of adhesive had a significant effect on water absorption. The smallest WA was observed in plywood samples using UF adhesive (54.3%), intermediate in samples using HDPE film (57.1%), and the highest in samples using PF adhesive (59.7%) (
Table 7).