Molecularly Imprinted Polymer-Based Hybrid Materials for the Development of Optical Sensors
Abstract
:1. Introduction
1.1. Molecularly Imprinted Polymers
1.2. MIP-Based Optical Sensors
2. Bi-Dimensional Composites
2.1. Metal Chips
2.2. Silicon-Based Slides
2.3. Other Conductive Substrates
3. Three-Dimensional Composites
3.1. Inorganic Cores
3.1.1. Non-Magnetic Metal-Oxides
3.1.2. Magnetic Metal-Oxides
3.1.3. Up-Conversion Nanoparticles
3.1.4. Quantum Dots
3.1.5. Metal Nanoparticles
3.2. Silica Cores
3.3. Other Organic and Hybrid Cores
4. Other Materials
4.1. Optical Fibers
4.2. Photonic Crystals
5. Conclusions and Future Perspective
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2,4-D | 2,4-dichlorophenoxyacetic acid |
2,6-DCP | 2,6-dichlorophenol |
2,4-DNT | 2,4-dinitrotoluene |
2,6-DN | 2,6-dinitrotoluene;4-MNT: 4-nitrotoluene |
3-MCPD | 3-Monochloropropane-1,2-diol |
4-MNT | 4-nitrotoluene |
4-NP | 4-nitrophenol |
4-VPy | 4-vynilpyridine |
AAm | Acrylamide |
AIBN | 2,2′-azobis(2-methylpropionitrile) |
AIE | Aggregation-induced emission |
AM | Acrylamide |
Anti-CCP | Cyclic citrullinated peptide antibodies |
APTES | (3-Aminopropyl)triethoxysilane |
ATPR | Atom transfer radical polymerization |
b-Si | Black silicon |
bAuNPs | Multibranched gold nanoparticles |
BHb | Bovine haemoglobin |
BSA | Bovine serum albumin |
C4-HSL | N-butyryl-L-homoserine lactone |
C6-HSL | N-hexanoyl-L-homoserine lactone |
C8-HSL | N-octanoyl-L-homoserine |
CC | Colloid crystal |
CD | β-cyclodextrin |
CDs | Carbon dots |
CdTe/ZnQ2 | CdTe/ZnS quelated by 8-hydroxyquinoline |
CIP | Control imprinted polymer |
CL | Cross-linker |
CM | Co-monomer |
CNT | Carbon nanotubes |
ConA | Concanavalin A |
CPE | Carbon paste electrode |
CRP | Controlled radical polymerization |
CTAB | Cetrimonium bromide |
Cyt C | Cytochrome C |
DBDS | Dibenzyl disulphide |
DEHP | Diethylhexyl phthalate |
DMF | N,N-Dimethylformamide |
DMMP | Dimethyl methylphosphonate |
DNA | Deoxyribonucleic acid |
DR | Dynamic range |
EA | Ethanolamine |
EC | Electrochromism |
ECL | Electrochemiluminescence |
ECL-RET/ECRET | ECL resonance energy transfer |
EDTA | Ethylenediaminetetraacetic acid |
EGDMA | Ethylene glycol dimethacrylate |
ELISA | Enzyme-Linked ImmunoSorbent Assay |
FL | Fluorescence |
FM | Functional monomer |
FMIPs | Fluorescent MIPs |
FQs | Fluoroquinolones |
FRET | Förster resonance energy transfer |
GCE | Glassy carbon electrode |
GDs | Graphene (quantum) dots |
GE | Gold electrode |
GF | Grafting from |
GO | Graphene oxide |
Gra | Carboxylated Graphene |
GS | Glass slide |
GT | Grafting to |
HAV | Hepatitis A virus |
HEMA | 2-Hydroxyethylmethacrylate |
HPLC | High performance liquid chromatography |
HQ | 8-hydroxyquinoline |
HRP | Horseradish peroxidase |
IBA | Indole-3-butyric acid |
IF | Interferometry |
IO | Inverse opal |
IR | Infrared |
IrOx | Iridium oxide |
ITO | Indium Tin Oxide |
JEV | Japanese encephalitis virus |
LC-MS/MS | Liquid chromatography–Tandem mass spectrometry |
LMR | Lossy mode resonance |
LOD | Limit of detection |
LSPR | Localized surface plasmon resonance |
m-MIP | Mesoporous MIP |
MAA | Methacrylic acid |
MeCN | Acetonitrile |
MIL-101 | Cr/terephthalate-MOF |
MIP | Molecularly imprinted polymer |
MIPPs | Molecularly imprinted photonic polymers |
MIPH | Molecularly imprinted photonic hydrogel |
MISPE | Molecularly imprinted solid-phase extraction |
mMIP | Mesoporous MIP |
Mn:ZnS | Mn-doped ZnS |
MOFs | Metal-organic framework |
MPA | Methanephosphonic acid |
MPS | 3-(trimethoxysilyl)-propyl-methacrylate |
mSiO2 | Mesoporous silica |
MWCNTs | Multi-walled carbon nanotubes |
N-3oxo-C6-HSL | 3-oxo-hexanoyl homoserine lactone |
NDPhA | N-Nitrosodiphenylamine |
NiNCs | Nickel nanoclusters |
NIP | Non imprinted polymer |
nMIPs | Nano-MIPs |
NPs | Nanoparticles |
NRs | Nanorods |
OTA | Ochratoxin A |
OVA | Ovalbumin |
PAAm | Polyacrylamide |
PANI | Polyaniline |
PASA | Plasmonic affinity sandwich assay |
PCs | Photonic crystals |
PenG | Penicillin G |
PFOAc | Perfluorooctanoic acid |
PGMA/EDMA | Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) |
PMMA | Polymetacrylic acid |
POF | Plastic optical fibre |
PrHy | Promethazine hydrochloride |
QDs | Quantum dots |
R6G | Rhodamine 6G |
RAFT | Reversible addition−fragmentation chain-transfer |
RDX | 1,3,5-trinitroperhydro-1,3,5-triazine |
RIfS | Reflectometric Interference Spectroscopy |
RIOPs | Responsive inverse opal polymers |
RLS | Resonance light scattering |
RoxP | Bacterial factor |
RTP | Room-temperature phosphorescence |
RUDS | [Ru(bpy)3]2+ embedded in SiO2 |
S | Solvent |
SEECL | Surface-enhanced electrochemiluminescence |
SERS | Surface-enhanced Raman spectroscopy |
SI-ATPR | Surface-initiated atom transfer radical polymerization |
SPE | Solid-phase extraction |
SPR | Surface plasmon resonance |
SPRi | Surface plasmon resonance imaging |
T | Template |
TBA | Tetrabutyl ammonium |
TBBPA | Tetrabromobisphenol-A |
TEOS | Tetraethyl orthosilicate |
THZ | Thioridazine hydrochloride |
TNP | 2,4,6-trinitrophenol |
UCNPs | Up-conversion nanoparticles |
UCPs | Up-conversion particles |
UV-Vis | Ultraviolet-visible |
VOCs | Volatile organic compounds |
ZIF-8 | Zn/imidazole-MOFs |
ZOA | ZnO/Ag |
References
- Haupt, K.; Linares, A.V.; Bompart, M.; Bui, B.T.S. Molecularly Imprinted Polymers. In Molecular Imprinting; Haupt, K., Ed.; Springer: Berlin, Germany, 2012; pp. 1–28. [Google Scholar]
- Tse Sum Bui, B.; Haupt, K. Molecularly imprinted polymers: Synthetic receptors in bioanalysis. Anal. Bioanal. Chem. 2010, 398, 2481–2492. [Google Scholar] [CrossRef] [PubMed]
- Karim, K.; Breton, F.; Rouillon, R.; Piletska, E.V.; Guerreiro, A.; Chianella, I.; Piletsky, S.A. How to find effective functional monomers for effective molecularly imprinted polymers? Adv. Drug Deliv. Rev. 2005, 57, 1795–1808. [Google Scholar] [CrossRef] [PubMed]
- Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: Present and future prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [PubMed]
- Rampey, A.M.; Umpleby, R.J.; Rushton, G.T.; Iseman, J.C.; Shah, R.N.; Shimizu, K.D. Characterization of the imprint effect and the influence of imprinting conditions on affinity, capacity, and heterogeneity in molecularly imprinted polymers using the freundlich isotherm-affinity distribution analysis. Anal. Chem. 2004, 76, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Esfandyari-Manesh, M.; Javanbakht, M.; Atyabi, F.; Badiei, A.; Dinarvand, R. Effect of porogenic solvent on the morphology, recognition and release properties of carbamazepine-molecularly imprinted polymer nanospheres. J. Appl. Polym. Sci. 2011, 121, 1118–1126. [Google Scholar] [CrossRef]
- Nagy-Szakolczai, A.; Dorkó, Z.; Tóth, B.; Horvai, G. New methods to study the behavior of molecularly imprinted polymers in aprotic solvents. Polymers 2018, 10, 1015. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.W.; Piletska, E.V.; Karim, K.; Whitcombe, M.; Malecha, M.; Magan, N.; Baggiani, C.; Piletsky, S.A. Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin a. Biosens. Bioelectron. 2004, 20, 1060–1067. [Google Scholar] [CrossRef]
- Moreno-Bondi, M.C.; Urraca, J.L.; Carrasco, S.; Navarro-Villoslada, F. Preparation of Molecularly Imprinted Polymers. In Handbook of Molecularly Imprinted Polymers; Álvarez-Lorenzo, C., Concheiro, Á., Eds.; Smithers Rapra Technology Ltd.: Shropshire, UK, 2013; pp. 23–86. [Google Scholar]
- Li, J.; Wei, G.; Zhang, Y. Chapter 2—Molecularly Imprinted Polymers as Recognition Elements in Sensors. In Molecularly Imprinted Sensors; Elsevier: Amsterdam, The Netherlands, 2012; pp. 35–55. [Google Scholar]
- Mijangos, I.; Navarro-Villoslada, F.; Guerreiro, A.; Piletska, E.; Chianella, I.; Karim, K.; Turner, A.; Piletsky, S. Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers. Biosens. Bioelectron. 2006, 22, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Mujahid, A.; Lieberzeit, P.A.; Dickert, F.L. Chemical sensors based on molecularly imprinted sol-gel materials. Materials 2010, 3, 2196–2217. [Google Scholar] [CrossRef]
- Ertürk, G.; Mattiasson, B. Molecular imprinting techniques used for the preparation of biosensors. Sensors 2017, 17, 288. [Google Scholar] [CrossRef]
- Lorenzo, R.; Carro, A.; Alvarez-Lorenzo, C.; Concheiro, A. To remove or not to remove? The challenge of extracting the template to make the cavities available in molecularly imprinted polymers (mips). Int. J. Mol. Sci. 2011, 12, 4327. [Google Scholar] [CrossRef] [PubMed]
- Martín-Esteban, A. Molecularly imprinted polymers: Providing selectivity to sample preparation. J. Chromatogr. Sci. 2009, 47, 254–256. [Google Scholar] [CrossRef] [PubMed]
- Ye, L. Synthetic Strategies in Molecular Imprinting. In Molecularly Imprinted Polymers in Biotechnology; Mattiasson, B., Ye, L., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–24. [Google Scholar]
- García-Calzón, J.A.; Díaz-García, M.E. Characterization of binding sites in molecularly imprinted polymers. Sens. Actuators B Chem. 2007, 123, 1180–1194. [Google Scholar] [CrossRef]
- Baggiani, C.; Giovannoli, C.; Anfossi, L.; Passini, C.; Baravalle, P.; Giraudi, G. A connection between the binding properties of imprinted and nonimprinted polymers: A change of perspective in molecular imprinting. J. Am. Chem. Soc. 2012, 134, 1513–1518. [Google Scholar] [CrossRef] [PubMed]
- Cederfur, J.; Pei, Y.; Zihui, M.; Kempe, M. Synthesis and screening of a molecularly imprinted polymer library targeted for penicillin g. J. Comb. Chem. 2003, 5, 67–72. [Google Scholar] [CrossRef]
- Terracina, J.J.; Bergkvist, M.; Sharfstein, S.T. Computational investigation of stoichiometric effects, binding site heterogeneities, and selectivities of molecularly imprinted polymers. J. Mol. Modeling 2016, 22, 139. [Google Scholar] [CrossRef]
- Dickey, F.H. The preparation of specific adsorbents. Proc. Natl. Acad. Sci. USA 1949, 35, 227–229. [Google Scholar] [CrossRef]
- Wulff, G.; Sarhan, A. Über die anwendung von enzymanalog gebauten polymeren zur racemattrennung. Angew. Chem. 1972, 84, 364. [Google Scholar] [CrossRef]
- Takagishi, T.; Klotz, I.M. Macromolecule-small molecule interactions; introduction of additional binding sites in polyethyleneimine by disulfide cross–linkages. Biopolymers 1972, 11, 483–491. [Google Scholar] [CrossRef]
- Andersson, L.; Sellergren, B.; Mosbach, K. Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Lett. 1984, 25, 5211–5214. [Google Scholar] [CrossRef]
- O’Shannessy, D.J.; Ekberg, B.; Andersson, L.I.; Mosbach, K. Recent advances in the preparation and use of molecularly imprinted polymers for enantiomeric resolution of amino acid derivatives. J. Chromatogr. A 1989, 470, 391–399. [Google Scholar] [CrossRef]
- Tamayo, F.G.; Turiel, E.; Mart’ın-Esteban, A. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: Recent developments and future trends. J Chromatogr. A 2007, 1152. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Y.; Jiang, Y.; Li, S.; Liu, W. Molecularly imprinted polymers for the identification and separation of chiral drugs and biomolecules. Polymers 2016, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-C.; Cheng, C.-H.; Pan, H.-H.; Chung, T.-H.; Hwang, C.-C. Chromatographic characterization of molecularly imprinted polymers. Anal. Bioanal. Chem. 2007, 390, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Luliński, P. Molecularly imprinted polymers based drug delivery devices: A way to application in modern pharmacotherapy. A review. Mater. Sci. Eng. C 2017, 76, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Saylan, Y.; Akgönüllü, S.; Yavuz, H.; Ünal, S.; Denizli, A. Molecularly imprinted polymer based sensors for medical applications. Sensors 2019, 19, 1279. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.S.; Wojnarowicz, A.; Kutner, W.; D’Souza, F. 9—Molecularly Imprinted Polymers as Synthetic Catalysts. In Molecularly Imprinted Catalysts; Li, S., Cao, S., Piletsky, S.A., Turner, A.P.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 183–210. [Google Scholar]
- Sikiti, P.; Msagati, T.A.M.; Mamba, B.B.; Mishra, A.K. Synthesis and characterization of molecularly imprinted polymers for the remediation of pcbs and dioxins in aqueous environments. J. Environ. Health Sci. Eng. 2014, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- BelBruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef]
- Sibrian-Vazquez, M.; Spivak, D.A. Molecular imprinting made easy. J. Am. Chem. Soc. 2004, 126, 7827–7833. [Google Scholar] [CrossRef]
- Boysen, R.I. Advances in the development of molecularly imprinted polymers for the separation and analysis of proteins with liquid chromatography. J. Sep. Sci. 2019, 42, 51–71. [Google Scholar] [CrossRef]
- Lin, Z.; DeMarr, V.; Bao, J.; Wu, T. Molecularly imprinted polymer-based biosensors: For the early, rapid detection of pathogens, biomarkers, and toxins in clinical, environmental, or food samples. IEEE Nanotechnol. Mag. 2018, 12, 6–13. [Google Scholar] [CrossRef]
- Malitesta, C.; Di Masi, S.; Mazzotta, E. From electrochemical biosensors to biomimetic sensors based on molecularly imprinted polymers in environmental determination of heavy metals. Front. Chem. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Uzun, L.; Turner, A.P.F. Molecularly-imprinted polymer sensors: Realising their potential. Biosens. Bioelectron. 2016, 76, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens. Bioelectron. 2018, 100, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Maria, C.M.-B.; Fernando, N.-V.; Elena, B.-P.; Javier, L.U. Molecularly imprinted polymers as selective recognition elements in optical sensing. Curr. Anal. Chem. 2008, 4, 316–340. [Google Scholar] [CrossRef]
- Blanco-López, M.C.; Gutiérrez-Fernández, S.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Electrochemical sensing with electrodes modified with molecularly imprinted polymer films. Anal. Bioanal. Chem. 2004, 378, 1922–1928. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.S.; Pietrzyk-Le, A.; D’Souza, F.; Kutner, W. Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal. Bioanal. Chem. 2012, 402, 3177–3204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar] [CrossRef]
- Beyazit, S.; Tse Sum Bui, B.; Haupt, K.; Gonzato, C. Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization. Prog. Polym. Sci. 2016, 62, 1–21. [Google Scholar] [CrossRef]
- Bompart, M.; Haupt, K. Molecularly imprinted polymers and controlled/living radical polymerization. Aust. J. Chem. 2009, 62, 751–761. [Google Scholar] [CrossRef]
- Bompart, M.; Haupt, K.; Ayela, C. Micro and Nanofabrication of Molecularly Imprinted Polymers. In Molecular Imprinting; Haupt, K., Ed.; Springer: Berlin, Germany, 2012; pp. 83–110. [Google Scholar]
- Zaidi, S.A. Recent developments in molecularly imprinted polymer nanofibers and their applications. Anal. Methods 2015, 7, 7406–7415. [Google Scholar] [CrossRef]
- Lalo, H.; Ayela, C.; Dague, E.; Vieu, C.; Haupt, K. Nanopatterning molecularly imprinted polymers by soft lithography: A hierarchical approach. Lab A Chip 2010, 10, 1316–1318. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Feng, Y.; Pan, G.; Liu, L. Advances in molecularly imprinting technology for bioanalytical applications. Sensors 2019, 19, 177. [Google Scholar] [CrossRef] [PubMed]
- Peltomaa, R.; Glahn-Martínez, B.; Benito-Peña, E.; Moreno-Bondi, C.M. Optical biosensors for label-free detection of small molecules. Sensors 2018, 18, 4126. [Google Scholar] [CrossRef] [PubMed]
- Whitcombe, M.J.; Chianella, I.; Larcombe, L.; Piletsky, S.A.; Noble, J.; Porter, R.; Horgan, A. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem. Soc. Rev. 2011, 40, 1547–1571. [Google Scholar] [CrossRef]
- Al-Kindy, S.; Badía, R.; Suárez-Rodríguez, J.L.; Díaz-García, M.E. Molecularly imprinted polymers and optical sensing applications. Crit. Rev. Anal. Chem. 2000, 30, 291–309. [Google Scholar] [CrossRef]
- Haupt, K.; Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000, 100, 2495–2504. [Google Scholar] [CrossRef]
- Henry, O.Y.F.; Cullen, D.C.; Piletsky, S.A. Optical interrogation of molecularly imprinted polymers and development of mip sensors: A review. Anal. Bioanal. Chem. 2005, 382, 947–956. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef]
- Stephenson, C.J.; Shimizu, K.D. Colorimetric and fluorometric molecularly imprinted polymer sensors and binding assays. Polym. Int. 2007, 56, 482–488. [Google Scholar] [CrossRef]
- Zaidi, S.A. Molecular imprinting polymers and their composites: A promising material for diverse applications. Biomater. Sci. 2017, 5, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Yu, N.; Shi, C.; Wang, X.; Wu, J. Surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array. Talanta 2016, 161, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; He, Q.; He, Y.; Xin, M.; Zhang, Y.; Shen, Z. Molecular imprinting sensor based on quantum weak measurement. Biosens. Bioelectron. 2017, 94, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Liu, C.; Xie, Y.; Jia, P.; Hayashi, K. Localized surface plasmon resonance gas sensor based on molecularly imprinted polymer coated au nano-island films: Influence of nanostructure on sensing characteristics. IEEE Sens. J. 2016, 16, 3532–3540. [Google Scholar] [CrossRef]
- Dibekkaya, H.; Saylan, Y.; Yılmaz, F.; Derazshamshir, A.; Denizli, A. Surface plasmon resonance sensors for real-time detection of cyclic citrullinated peptide antibodies. J. Macromol. Sci. Part A 2016, 53, 585–594. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Öpik, A.; Furchner, A.; Syritski, V. Hybrid molecularly imprinted polymer for amoxicillin detection. Biosens. Bioelectron. 2018, 118, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Ertürk, G.; Mattiasson, B. From imprinting to microcontact imprinting—A new tool to increase selectivity in analytical devices. J. Chromatogr. 2016, 1021, 30–44. [Google Scholar] [CrossRef]
- Ertürk Bergdahl, G.; Andersson, T.; Allhorn, M.; Yngman, S.; Timm, R.; Lood, R. In vivo detection and absolute quantification of a secreted bacterial factor from skin using molecularly imprinted polymers in a surface plasmon resonance biosensor for improved diagnostic abilities. ACS Sens. 2019, 4, 717–725. [Google Scholar] [CrossRef]
- Perçin, I.; Idil, N.; Bakhshpour, M.; Yılmaz, E.; Mattiasson, B.; Denizli, A. Microcontact imprinted plasmonic nanosensors: Powerful tools in the detection of salmonella paratyphi. Sensors 2017, 17, 1375. [Google Scholar] [CrossRef]
- Kidakova, A.; Reut, J.; Rappich, J.; Öpik, A.; Syritski, V. Preparation of a surface-grafted protein-selective polymer film by combined use of controlled/living radical photopolymerization and microcontact imprinting. React. Funct. Polym. 2018, 125, 47–56. [Google Scholar] [CrossRef]
- Mori, K.; Hirase, M.; Morishige, T.; Takano, E.; Sunayama, H.; Kitayama, Y.; Inubushi, S.; Sasaki, R.; Yashiro, M.; Takeuchi, T. A pretreatment-free, polymer-based platform prepared by molecular imprinting and post-imprinting modifications for sensing intact exosomes. Angew. Chem. Int. Ed. 2019, 58, 1612–1615. [Google Scholar] [CrossRef] [PubMed]
- Suda, N.; Sunayama, H.; Kitayama, Y.; Kamon, Y.; Takeuchi, T. Oriented, molecularly imprinted cavities with dual binding sites for highly sensitive and selective recognition of cortisol. R. Soc. Open Sci. 2017, 4, 170300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naraprawatphong, R.; Kawamura, A.; Miyata, T. Preparation of molecularly imprinted hydrogel layer spr sensor chips with lectin-recognition sites via si-atrp. Polym. J. 2018, 50, 261–269. [Google Scholar] [CrossRef]
- Saeki, T.; Sunayama, H.; Kitayama, Y.; Takeuchi, T. Orientationally fabricated zwitterionic molecularly imprinted nanocavities for highly sensitive glycoprotein recognition. Langmuir 2019, 35, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- Hubilla, F.A.D.; Mabilangan, A.I.; Advincula, R.C.; del Mundo, F.R. A surface plasmon resonance histamine sensor based on an electropolymerized molecularly imprinted polymer (e-mip). MATEC Web Conf. 2017, 95, 02006. [Google Scholar] [CrossRef]
- Muhammad, P.; Liu, J.; Xing, R.; Wen, Y.; Wang, Y.; Liu, Z. Fast probing of glucose and fructose in plant tissues via plasmonic affinity sandwich assay with molecularly-imprinted extraction microprobes. Anal. Chim. Acta 2017, 995, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Erdem, Ö.; Saylan, Y.; Cihangir, N.; Denizli, A. Molecularly imprinted nanoparticles based plasmonic sensors for real-time enterococcus faecalis detection. Biosens. Bioelectron. 2019, 126, 608–614. [Google Scholar] [CrossRef]
- Ashley, J.; Shukor, Y.; D’Aurelio, R.; Trinh, L.; Rodgers, T.L.; Temblay, J.; Pleasants, M.; Tothill, I.E. Synthesis of molecularly imprinted polymer nanoparticles for α-casein detection using surface plasmon resonance as a milk allergen sensor. ACS Sens. 2018, 3, 418–424. [Google Scholar] [CrossRef]
- Altintas, Z. Surface plasmon resonance based sensor for the detection of glycopeptide antibiotics in milk using rationally designed nanomips. Sci. Rep. 2018, 8, 11222. [Google Scholar] [CrossRef]
- Guerreiro, J.R.L.; Teixeira, N.; De Freitas, V.; Sales, M.G.F.; Sutherland, D.S. A saliva molecular imprinted localized surface plasmon resonance biosensor for wine astringency estimation. Food Chem. 2017, 233, 457–466. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, C.; Chen, C.; Zhu, S.; Zhou, J.; Wang, M.; Shang, P. Determination of kanamycin using a molecularly imprinted spr sensor. Food Chem. 2018, 266, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, Y.; Wang, B.; Luo, L.; Xu, Z.; Tian, X. A novel surface plasmon resonance sensor based on a functionalized graphene oxide/molecular-imprinted polymer composite for chiral recognition of l-tryptophan. RSC Adv. 2018, 8, 32538–32544. [Google Scholar] [CrossRef] [Green Version]
- Shang, L.; Liu, C.; Chen, B.; Hayashi, K. Plant biomarker recognition by molecular imprinting based localized surface plasmon resonance sensor array: Performance improvement by enhanced hotspot of au nanostructure. ACS Sens. 2018, 3, 1531–1538. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Bahethan, B.; Muhammad, T.; Yakup, B.; Abbas, M. A simple and selective fluorescent sensor chip for indole-3-butyric acid in mung bean sprouts based on molecularly imprinted polymer coatings. Sensors 2017, 17, 1954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qian, L.; Yin, W.; He, B.; Liu, F.; Hou, C.; Huo, D.; Fa, H. A dual read-out molecularly imprinted composite membrane sensor based on zinc porphyrin for the detection of dimethyl methylphosphonate. Chem. Res. Chin. Univ. 2016, 32, 725–730. [Google Scholar] [CrossRef]
- Li, X.; Li, B.; Hong, J.; Zhou, X. Highly selective determination of acid phosphatase in biological samples using a biomimetic recognition-based sers sensor. Sens. Actuators B Chem. 2018, 276, 421–428. [Google Scholar] [CrossRef]
- Weber, P.; Riegger, B.R.; Niedergall, K.; Tovar, G.E.M.; Bach, M.; Gauglitz, G. Nano-mip based sensor for penicillin g: Sensitive layer and analytical validation. Sens. Actuators B Chem. 2018, 267, 26–33. [Google Scholar] [CrossRef]
- Seniutinas, G.; Gervinskas, G.; Verma, R.; Gupta, B.D.; Lapierre, F.; Stoddart, P.R.; Clark, F.; McArthur, S.L.; Juodkazis, S. Versatile sers sensing based on black silicon. Opt. Express 2015, 23, 6763–6772. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, R.; Yang, X.; Qi, H.; Zhang, C. Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J. Pharm. Anal. 2019, 9, 9–19. [Google Scholar] [CrossRef]
- Moreno-Bondi, M.C.; Benito-Peña, E.; Carrasco, S.; Urraca, J.L. Molecularly Imprinted Polymer-Based Optical Chemosensors for Selective Chemical Determinations. In Molecularly Imprinted Polymers for Analytical Chemistry Applications; The Royal Society of Chemistry: London, UK, 2018; pp. 227–281. [Google Scholar]
- Hu, L.; Zhou, T.; Feng, J.; Jin, H.; Tao, Y.; Luo, D.; Mei, S.; Lee, Y.-I. A rapid and sensitive molecularly imprinted electrochemiluminescence sensor for azithromycin determination in biological samples. J. Electroanal. Chem. 2018, 813, 1–8. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Zhang, L.; Gao, J.; Ma, Q. Electrochemiluminescence detection of escherichia coli o157:H7 based on a novel polydopamine surface imprinted polymer biosensor. ACS Appl. Mater. Interfaces 2017, 9, 5430–5436. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Fang, G.; Pan, M.; Yang, Y.; Bai, X.; Wang, S. A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rgo for selective and ultrasensitive detection of clenbuterol. Biosens. Bioelectron. 2018, 102, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xie, T.; Shi, D.; Jin, J.; Xie, C. Enhanced electrochemiluminescence of luminol at the gold nanoparticle/carbon nanotube/electropolymerised molecular imprinting composite membrane interface for selective recognition of triazophos. Int. J. Environ. Anal. Chem. 2016, 96, 1300–1311. [Google Scholar] [CrossRef]
- Lin, Y.; Cao, J.; Li, X.; Zhang, X.; Zhang, J.; Lin, Z. A novel molecularly imprinted electrochemiluminescence sensor based on a ru(bpy)32+/mwcnts/nano-tio2-nafion electrode for the detection of bisphenol a. Anal. Methods 2016, 8, 7445–7452. [Google Scholar] [CrossRef]
- Lian, S.; Huang, Z.; Lin, Z.; Chen, X.; Oyama, M.; Chen, X. A highly selective melamine sensor relying on intensified electrochemiluminescence of the silica nanoparticles doped with [ru(bpy)3]2+/molecularly imprinted polymer modified electrode. Sens. Actuators B Chem. 2016, 236, 614–620. [Google Scholar] [CrossRef]
- Cao, N.; Zeng, P.; Zhao, F.; Zeng, B. Fabrication of molecularly imprinted polypyrrole /ru@ethyl-sio2 nanocomposite for the ultrasensitive electrochemiluminescence sensing of 17β-estradiol. Electrochim. Acta 2018, 291, 18–23. [Google Scholar] [CrossRef]
- Zhang, W.; Xiong, H.; Chen, M.; Zhang, X.; Wang, S. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on ru@sio2 for ultrasensitive detection of fumonisin b1. Biosens. Bioelectron. 2017, 96, 55–61. [Google Scholar] [CrossRef]
- Chen, M.-M.; Wang, Y.; Cheng, S.-B.; Wen, W.; Zhang, X.; Wang, S.; Huang, W.-H. Construction of highly efficient resonance energy transfer platform inside a nanosphere for ultrasensitive electrochemiluminescence detection. Anal. Chem. 2018, 90, 5075–5081. [Google Scholar] [CrossRef]
- Li, S.; Liu, C.; Yin, G.; Zhang, Q.; Luo, J.; Wu, N. Aptamer-molecularly imprinted sensor base on electrogenerated chemiluminescence energy transfer for detection of lincomycin. Biosens. Bioelectron. 2017, 91, 687–691. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Luo, J.; Zhang, Q.; Zhang, L. A fluorescence switch sensor for detection of virginiamycin based on graphene oxide-supported carbon quantum dots and molecularly imprinted polymer. RSC Adv. 2017, 7, 56359–56364. [Google Scholar] [CrossRef] [Green Version]
- Capoferri, D.; Álvarez-Diduk, R.; Del Carlo, M.; Compagnone, D.; Merkoçi, A. Electrochromic molecular imprinting sensor for visual and smartphone-based detections. Anal. Chem. 2018, 90, 5850–5856. [Google Scholar] [CrossRef] [PubMed]
- Babamiri, B.; Salimi, A.; Hallaj, R.; Hasanzadeh, M. Nickel nanoclusters as a novel emitter for molecularly imprinted electrochemiluminescence based sensor toward nanomolar detection of creatinine. Biosens. Bioelectron. 2018, 107, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, S.; Li, J. A molecularly imprinted sensor with enzymatic enhancement of electrochemiluminescence of quantum dots for ultratrace clopyralid determination. Anal. Bioanal. Chem. 2018, 410, 5165–5172. [Google Scholar] [CrossRef] [PubMed]
- Mo, G.; He, X.; Zhou, C.; Ya, D.; Feng, J.; Yu, C.; Deng, B. A novel ecl sensor based on a boronate affinity molecular imprinting technique and functionalized sio2@cqds/aunps/mpba nanocomposites for sensitive determination of alpha-fetoprotein. Biosens. Bioelectron. 2019, 126, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Chen, Z.; Huang, C.; Shen, X. Core–shell molecularly imprinted particles. TrAC Trends Anal. Chem. 2017, 95, 110–121. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, K.; Wei, X.; Hao, T.; Xu, Y.; Lv, X.; Zhang, Y. A mesoporous fluorescent sensor based on zno nanorods for the fluorescent detection and selective recognition of tetracycline. RSC Adv. 2016, 6, 71061–71069. [Google Scholar] [CrossRef]
- Wang, Y.; Ruan, W.; Zhang, J.; Yang, B.; Xu, W.; Zhao, B.; Lombardi, J.R. Direct observation of surface-enhanced raman scattering in zno nanocrystals. J. Raman Spectrosc. 2009, 40, 1072–1077. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Wang, X.; Jiang, J.; Xu, Y.; Liu, X.; Yan, Y.; Li, C. Preparation of a self-cleanable molecularly imprinted sensor based on surface-enhanced raman spectroscopy for selective detection of r6g. Anal. Bioanal. Chem. 2017, 409, 4627–4635. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.; Tan, X.; Tapas, S.; Zhang, J. Aim and shoot: Molecule-imprinting polymer coated moo3 for selective sers detection and photocatalytic destruction of low-level organic contaminants. RSC Adv. 2017, 7, 36201–36207. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Z.; Xu, W.; Luan, Y.; Lu, Y.; Yang, Y.; Liu, T.; Li, S.; Yang, W. Surface molecularly imprinted polymers based zno quantum dots as fluorescence sensors for detection of diethylhexyl phthalate with high sensitivity and selectivity. Polym. Int. 2018, 67, 1003–1010. [Google Scholar] [CrossRef]
- Bossi, A.M.; Cenci, L.; Tognato, R. Application of Nanomaterials to Molecularly Imprinted Polymers. In Molecularly Imprinted Polymers for Analytical Chemistry Applications; The Royal Society of Chemistry: London, UK, 2018; pp. 124–144. [Google Scholar]
- Zhang, F.; Luo, L.; Gong, H.; Chen, C.; Cai, C. A magnetic molecularly imprinted optical chemical sensor for specific recognition of trace quantities of virus. RSC Adv. 2018, 8, 32262–32268. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, N.; Jiang, J.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. Molecularly imprinted magnetic microparticles for the simultaneous detection and extraction of rhodamine b. Sens. Actuators B Chem. 2017, 246, 286–292. [Google Scholar] [CrossRef]
- Yuan, X.; Tan, Y.; Wei, X.; Li, J. Chiral determination of cinchonine using an electrochemiluminescent sensor with molecularly imprinted membrane on the surfaces of magnetic particles. Luminescence 2017, 32, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, J.; Li, J.; Chen, T.; Wu, M. Dual-functional imprinted magnetic nanoprobes for fluorescence detection of n-nitrosodiphenylamine. Anal. Methods 2018, 10, 2384–2389. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, D.; Cao, Y.; Gan, N. An antibody-free and signal-on type electrochemiluminescence sensor for diethylstilbestrol detection based on magnetic molecularly imprinted polymers-quantum dots labeled aptamer conjugated probes. J. Electroanal. Chem. 2017, 789, 1–8. [Google Scholar] [CrossRef]
- Xu, W.; Li, T.; Huang, W.; Luan, Y.; Yang, Y.; Li, S.; Yang, W. A magnetic fluorescence molecularly imprinted polymer sensor with selectivity for dibutyl phthalate via mn doped zns quantum dots. RSC Adv. 2017, 7, 51632–51639. [Google Scholar] [CrossRef]
- Wang, H.-Q.; Nann, T. Upconverting Nanoparticles. In Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects; Hänninen, P., Härmä, H., Eds.; Springer: Berlin, Germany, 2011; pp. 115–132. [Google Scholar]
- Liu, X.; Ren, J.; Su, L.; Gao, X.; Tang, Y.; Ma, T.; Zhu, L.; Li, J. Novel hybrid probe based on double recognition of aptamer-molecularly imprinted polymer grafted on upconversion nanoparticles for enrofloxacin sensing. Biosens. Bioelectron. 2017, 87, 203–208. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, E.; Jiao, A.; Jin, Z.; Irudayaraj, J. Bimodal counterpropagating-responsive sensing material for the detection of histamine. RSC Adv. 2017, 7, 44933–44944. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ren, S.; Jiang, H.; Peng, Y.; Bai, J.; Li, Q.; Li, C.; Gao, Z.; Ning, B. A label-free detection of diethylstilbestrol based on molecularly imprinted polymer-coated upconversion nanoparticles obtained by surface grafting. RSC Adv. 2017, 7, 22215–22221. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Liu, H.; Gao, J.; Liu, X.; Gao, X.; Lu, X.; Fang, G.; Wang, J.; Li, J. Upconversion particle@fe3o4@molecularly imprinted polymer with controllable shell thickness as high-performance fluorescent probe for sensing quinolones. Talanta 2018, 181, 95–103. [Google Scholar] [CrossRef]
- Schäferling, M.; Resch-Genger, U. Luminescent Nanoparticles for Chemical Sensing and Imaging. In Reviews in Fluorescence 2016; Geddes, C.D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 71–109. [Google Scholar]
- Habimana, J.d.D.; Ji, J.; Pi, F.; Karangwa, E.; Sun, J.; Guo, W.; Cui, F.; Shao, J.; Ntakirutimana, C.; Sun, X. A class-specific artificial receptor-based on molecularly imprinted polymer-coated quantum dot centers for the detection of signaling molecules, n-acyl-homoserine lactones present in gram-negative bacteria. Anal. Chim. Acta 2018, 1031, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, S.; Liu, W.; Fu, L.; Wang, Y.; Li, J.; Chen, L. Molecular imprinting based hybrid ratiometric fluorescence sensor for the visual determination of bovine hemoglobin. ACS Sens. 2018, 3, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiao, H.-F.; Shi, X.-Z.; Sun, A.; Wang, X.; Chai, J.; Li, D.-X.; Chen, J. Development and application of a novel fluorescent nanosensor based on fese quantum dots embedded silica molecularly imprinted polymer for the rapid optosensing of cyfluthrin. Biosens. Bioelectron. 2018, 99, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, X.; Liu, J.; Wu, M.; Li, M.; Zang, X. One-pot synthesis of a fluorescent molecularly imprinted nanosensor for highly selective detection of sulfapyridine in water. Anal. Methods 2018, 10, 884–890. [Google Scholar] [CrossRef]
- Huang, S.; Guo, M.; Tan, J.; Geng, Y.; Wu, J.; Tang, Y.; Su, C.; Lin, C.C.; Liang, Y. Novel fluorescence sensor based on all-inorganic perovskite quantum dots coated with molecularly imprinted polymers for highly selective and sensitive detection of omethoate. ACS Appl. Mater. Interfaces 2018, 10, 39056–39063. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Lei, J.; Yang, L.; Shen, B.; Wang, L.; Zhang, J. Carbon-dot-encapsulated molecularly imprinted mesoporous organosilica for fluorescent sensing of rhodamine 6g. Res. Chem. Intermed. 2018, 44, 4633–4640. [Google Scholar] [CrossRef]
- Mehrzad-Samarin, M.; Faridbod, F.; Ganjali, M.R. A luminescence nanosensor for ornidazole detection using graphene quantum dots entrapped in silica molecular imprinted polymer. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 206, 430–436. [Google Scholar] [CrossRef]
- Wan, Y.-c.; Liu, Y.-j.; Liu, C.; Ma, H.-t.; Yu, H.-f.; Kang, J.-w.; Gao, C.-l.; Wu, Z.-q.; Zheng, D.; Lu, B. Rapid determination of neomycin in biological samples using fluorescent sensor based on quantum dots with doubly selective binding sites. J. Pharm. Biomed. Anal. 2018, 154, 75–84. [Google Scholar] [CrossRef]
- Geng, Y.; Guo, M.; Tan, J.; Huang, S.; Tang, Y.; Tan, L.; Liang, Y. A fluorescent molecularly imprinted polymer using aptamer as a functional monomer for sensing of kanamycin. Sens. Actuators B Chem. 2018, 268, 47–54. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D. A novel fluorescence sensing method based on quantum dot-graphene and a molecular imprinting technique for the detection of tyramine in rice wine. Anal. Methods 2018, 10, 3884–3889. [Google Scholar] [CrossRef]
- Liu, M.; Gao, Z.; Yu, Y.; Su, R.; Huang, R.; Qi, W.; He, Z. Molecularly imprinted core-shell cdse@sio2/cds as a ratiometric fluorescent probe for 4-nitrophenol sensing. Nanoscale Res. Lett. 2018, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Jalili, R. A molecularly imprinted dual-emission carbon dot-quantum dot mesoporous hybrid for ratiometric determination of anti-inflammatory drug celecoxib. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 191, 345–351. [Google Scholar] [CrossRef]
- Yang, Q.; Li, J.; Wang, X.; Peng, H.; Xiong, H.; Chen, L. Dual-emission color-controllable nanoparticle based molecular imprinting ratiometric fluorescence sensor for the visual detection of brilliant blue. Sens. Actuators B Chem. 2019, 284, 428–436. [Google Scholar] [CrossRef]
- Chullasat, K.; Kanatharana, P.; Bunkoed, O. Nanocomposite optosensor of dual quantum dot fluorescence probes for simultaneous detection of cephalexin and ceftriaxone. Sens. Actuators B Chem. 2019, 281, 689–697. [Google Scholar] [CrossRef]
- Shariati, R.; Rezaei, B.; Jamei, H.R.; Ensafi, A.A. Application of coated green source carbon dots with silica molecularly imprinted polymers as a fluorescence probe for selective and sensitive determination of phenobarbital. Talanta 2019, 194, 143–149. [Google Scholar] [CrossRef]
- Li, J.; Fu, J.; Yang, Q.; Wang, L.; Wang, X.; Chen, L. Thermosensitive molecularly imprinted core–shell cdte quantum dots as a ratiometric fluorescence nanosensor for phycocyanin recognition and detection in seawater. Analyst 2018, 143, 3570–3578. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Luan, Y.; Wang, N.; Zhou, Z.; Ni, X.; Cao, Y.; Zhang, G.; Lai, Y.; Yang, W. Ratiometric fluorescence nanosensors based on core-shell structured carbon/cdte quantum dots and surface molecularly imprinted polymers for the detection of sulfadiazine. J. Sep. Sci. 2018, 41, 4394–4401. [Google Scholar] [CrossRef] [PubMed]
- Montaseri, H.; Forbes, P.B.C. Molecularly imprinted polymer coated quantum dots for fluorescence sensing of acetaminophen. Mater. Today Commun. 2018, 17, 480–492. [Google Scholar] [CrossRef]
- Tan, J.; Guo, M.; Tan, L.; Geng, Y.; Huang, S.; Tang, Y.; Su, C.; Lin, C.C.; Liang, Y. Highly efficient fluorescent qds sensor for specific detection of protein through double recognition of hybrid aptamer-molecular imprinted polymers. Sens. Actuators B Chem. 2018, 274, 627–635. [Google Scholar] [CrossRef]
- Jalili, R.; Amjadi, M. Bio-inspired molecularly imprinted polymer–green emitting carbon dot composite for selective and sensitive detection of 3-nitrotyrosine as a biomarker. Sens. Actuators B Chem. 2018, 255, 1072–1078. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Nasr-Esfahani, P.; Rezaei, B. Synthesis of molecularly imprinted polymer on carbon quantum dots as an optical sensor for selective fluorescent determination of promethazine hydrochloride. Sens. Actuators B Chem. 2018, 257, 889–896. [Google Scholar] [CrossRef]
- Yang, J.; Lin, Z.-Z.; Nur, A.Z.; Lu, Y.; Wu, M.-H.; Zeng, J.; Chen, X.-M.; Huang, Z.-Y. Detection of trace tetracycline in fish via synchronous fluorescence quenching with carbon quantum dots coated with molecularly imprinted silica. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 190, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Chantada–Vázquez, M.P.; de–Becerra–Sánchez, C.; Fernández–del–Río, A.; Sánchez–González, J.; Bermejo, A.M.; Bermejo–Barrera, P.; Moreda–Piñeiro, A. Development and application of molecularly imprinted polymer—Mn-doped zns quantum dot fluorescent optosensing for cocaine screening in oral fluid and serum. Talanta 2018, 181, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Y.; Zhang, B.; Lu, X. Mn2+ doped zns qds modified fluorescence sensor based on molecularly imprinted polymer/sol-gel chemistry for detection of serotonin. Talanta 2018, 190, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Zhou, L.; Zhang, H.; Liu, L.; Gong, Z.-Y. A molecularly imprinted polymers/carbon dots-grafted paper sensor for 3-monochloropropane-1,2-diol determination. Food Chem. 2019, 274, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Tao, Y.; Shen, X.; Jin, H.; Zhou, T.; Zhou, Y.; Hu, L.; Luo, D.; Mei, S.; Lee, Y.-I. Highly sensitive and selective fluorescent sensor for tetrabromobisphenol-a in electronic waste samples using molecularly imprinted polymer coated quantum dots. Microchem. J. 2019, 144, 93–101. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Zakery, M.; Rezaei, B. An optical sensor with specific binding sites for the detection of thioridazine hydrochloride based on zno-qds coated with molecularly imprinted polymer. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 206, 460–465. [Google Scholar] [CrossRef]
- Poshteh Shirani, M.; Rezaei, B.; Ensafi, A.A. A novel optical sensor based on carbon dots embedded molecularly imprinted silica for selective acetamiprid detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 210, 36–43. [Google Scholar] [CrossRef]
- Zheng, L.; Zheng, Y.; Liu, Y.; Long, S.; Du, L.; Liang, J.; Huang, C.; Swihart, M.T.; Tan, K. Core-shell quantum dots coated with molecularly imprinted polymer for selective photoluminescence sensing of perfluorooctanoic acid. Talanta 2019, 194, 1–6. [Google Scholar] [CrossRef]
- Long, R.; Li, T.; Tong, C.; Wu, L.; Shi, S. Molecularly imprinted polymers coated cdte quantum dots with controllable particle size for fluorescent determination of p-coumaric acid. Talanta 2019, 196, 579–584. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Etchegoin, P.G. Sers Enhancement Factors and Related Topics. In Principles of Surface-Enhanced Raman Spectroscopy; Le Ru, E.C., Etchegoin, P.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 185–264. [Google Scholar]
- Shahar, T.; Sicron, T.; Mandler, D. Nanosphere molecularly imprinted polymers doped with gold nanoparticles for high selectivity molecular sensors. Nano Res. 2017, 10, 1056–1063. [Google Scholar] [CrossRef]
- Carrasco, S.; Benito-Peña, E.; Navarro-Villoslada, F.; Langer, J.; Sanz-Ortiz, M.N.; Reguera, J.; Liz-Marzán, L.M.; Moreno-Bondi, M.C. Multibranched gold–mesoporous silica nanoparticles coated with a molecularly imprinted polymer for label-free antibiotic surface-enhanced raman scattering analysis. Chem. Mater. 2016, 28, 7947–7954. [Google Scholar] [CrossRef]
- Li, J.; Yang, B.; Pan, H.; Xu, G. Molecularly imprinted sensor based on russian matryoshka structured molecules for enhanced specific identification and double amplification in ultra-trace tb3+ determination. Biosens. Bioelectron. 2018, 109, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Roy, E.; Patra, S.; Saha, S.; Kumar, D.; Madhuri, R.; Sharma, P.K. Shape effect on the fabrication of imprinted nanoparticles: Comparison between spherical-, rod-, hexagonal-, and flower-shaped nanoparticles. Chem. Eng. J. 2017, 321, 195–206. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Wang, X.; Jiang, J.; Zheng, J.; Yan, Y.; Li, C. High-performance composite imprinted sensor based on the surface enhanced raman scattering for selective detection of 2,6-dichlorophenol in water. J. Raman Spectrosc. 2018, 49, 222–229. [Google Scholar] [CrossRef]
- Brulé, T.; Granger, G.; Bukar, N.; Deschênes-Rancourt, C.; Havard, T.; Schmitzer, A.R.; Martel, R.; Masson, J.-F. A field-deployed surface plasmon resonance (spr) sensor for rdx quantification in environmental waters. Analyst 2017, 142, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X.; Wang, Z.; Jiang, J.; Qiao, Y.; Wei, M.; Yan, Y.; Li, C. A high-performance sers-imprinted sensor doped with silver particles of different surface morphologies for selective detection of pyrethroids in rivers. New J. Chem. 2017, 41, 14342–14350. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, R.; Liao, S.; Miao, Y.; Zhang, B.; Wang, F.; Yang, H. In situ reduced silver nanoparticles embedded molecularly imprinted reusable sensor for selective and sensitive sers detection of bisphenol a. Appl. Surf. Sci. 2018, 457, 323–331. [Google Scholar] [CrossRef]
- Liang, C.; Wang, H.; He, K.; Chen, C.; Chen, X.; Gong, H.; Cai, C. A virus-mips fluorescent sensor based on fret for highly sensitive detection of jev. Talanta 2016, 160, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Gong, H.; Chen, C.; Chen, X.; Cai, C. A virus resonance light scattering sensor based on mussel-inspired molecularly imprinted polymers for high sensitive and high selective detection of hepatitis a virus. Biosens. Bioelectron. 2017, 87, 679–685. [Google Scholar] [CrossRef]
- Qin, Y.; Xie, J.; Li, S.; Cai, C.; Chen, X.; Zhong, G.; Chen, C. A boronate affinity mip-based resonance light scattering sensor for sensitive detection of glycoproteins. Anal. Methods 2018, 10, 5112–5117. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Qiu, H.; Sun, L.; Dai, X.; Pan, J.; Yan, Y. A novel sensitive luminescence probe microspheres for rapid and efficient detection of τ-fluvalinate in taihu lake. Sci. Rep. 2017, 7, 46635. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Bell, J.; Biyikal, M.; Gawlitza, K.; Rurack, K. Integrating fluorescent molecularly imprinted polymer (mip) sensor particles with a modular microfluidic platform for nanomolar small-molecule detection directly in aqueous samples. Biosens. Bioelectron. 2018, 99, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jiang, J.; Wang, Z.; Wang, X.; Liu, X.; Yan, Y.; Li, C. A high performance and highly-controllable core-shell imprinted sensor based on the surface-enhanced raman scattering for detection of r6g in water. J. Colloid Interface Sci. 2017, 501, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Wu, L.; Ding, F.; Li, Q.; Wang, P.; Li, J.; Lu, Z.; Han, H. Surface-imprinted sio2@ Ag nanoparticles for the selective detection of bpa using surface enhanced raman scattering. Sens. Actuators B Chem. 2018, 258, 566–573. [Google Scholar] [CrossRef]
- Li, H.; Wei, X.; Zhang, Y.; Xu, Y.; Lu, K.; Li, C.; Yan, Y. Rapid and sensitive detection of hemoglobin with gold nanoparticles based fluorescence sensor in aqueous solution. J. Alloy. Compd. 2016, 685, 820–827. [Google Scholar] [CrossRef]
- Li, H.; Wei, X.; Xu, Y.; Lu, K.; Zhang, Y.; Yan, Y.; Li, C. A thin shell and “sunny shape” molecular imprinted fluorescence sensor in selective detection of trace level pesticides in river. J. Alloy. Compd. 2017, 705, 524–532. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, T.; Xu, W.; Huang, W.; Wang, N.; Yang, W. Synthesis and characterization of fluorescence molecularly imprinted polymers as sensor for highly sensitive detection of dibutyl phthalate from tap water samples. Sens. Actuators B Chem. 2017, 240, 1114–1122. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, Z.; Li, J.; Shao, H.; Chen, L.; Yang, X. A molecular imprinting fluorescence sensor based on quantum dots and a mesoporous structure for selective and sensitive detection of 2,4-dichlorophenoxyacetic acid. Sens. Actuators B Chem. 2017, 252, 934–943. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Cheng, R.; Sun, L.; Dai, X.; Yan, Y. Synthesis of molecularly imprinted dye-silica nanocomposites with high selectivity and sensitivity: Fluorescent imprinted sensor for rapid and efficient detection of τ-fluvalinate in vodka. J. Sep. Sci. 2018, 41, 1880–1887. [Google Scholar] [CrossRef]
- Miao, Y.; Sun, X.; Lv, J.; Yan, G. -phosphorescent mesoporous surface imprinting microspheres: Preparation and application for transferrin recognition from biological fluids. Acs Appl. Mater. Interfaces 2019, 11, 2264–2272. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.-r.; Ni, Y.-l.; Zhang, W.; Zhang, Z.-q.; Zhang, J. Detection of glycoprotein through fluorescent boronic acid-based molecularly imprinted polymer. Anal. Chim. Acta 2017, 960, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal–organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Deep, A.; Kim, K.-H. Metal organic frameworks for sensing applications. TrAC Trends Anal. Chem. 2015, 73, 39–53. [Google Scholar] [CrossRef]
- Yi, F.-Y.; Chen, D.; Wu, M.-K.; Han, L.; Jiang, H.-L. Chemical sensors based on metal–organic frameworks. ChemPlusChem 2016, 81, 675–690. [Google Scholar] [CrossRef]
- Carrasco, S. Metal-organic frameworks for the development of biosensors: A current overview. Biosensors 2018, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Q.; Teat, S.J.; Olson, D.H.; Li, J. Synthesis, structure, and selective gas adsorption of a single-crystalline zirconium based microporous metal–organic framework. Cryst. Growth Des. 2017, 17, 2034–2040. [Google Scholar] [CrossRef]
- Guo, Z.; Florea, A.; Jiang, M.; Mei, Y.; Zhang, W.; Zhang, A.; Săndulescu, R.; Jaffrezic-Renault, N. Molecularly imprinted polymer/metal organic framework based chemical sensors. Coatings 2016, 6, 42. [Google Scholar] [CrossRef]
- Liu, H.; Ni, T.; Mu, L.; Zhang, D.; Wang, J.; Wang, S.; Sun, B. Sensitive detection of pyrraline with a molecularly imprinted sensor based on metal-organic frameworks and quantum dots. Sens. Actuators B Chem. 2018, 256, 1038–1044. [Google Scholar] [CrossRef]
- Xu, L.; Pan, M.; Fang, G.; Wang, S. Carbon dots embedded metal-organic framework@molecularly imprinted nanoparticles for highly sensitive and selective detection of quercetin. Sens. Actuators B Chem. 2019, 286, 321–327. [Google Scholar] [CrossRef]
- Rivero, P.J.; Goicoechea, J.; Arregui, F.J. Optical fiber sensors based on polymeric sensitive coatings. Polymers 2018, 10, 280. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; Maria, L.D.; Chemelli, C.; Profumo, A.; Zeni, L.; Pesavento, M. Markers detection in transformer oil by plasmonic chemical sensor system based on pof and mips. IEEE Sens. J. 2016, 16, 7663–7670. [Google Scholar] [CrossRef]
- Cennamo, N.; Testa, G.; Marchetti, S.; De Maria, L.; Bernini, R.; Zeni, L.; Pesavento, M. Novel optical chemical sensor based on molecularly imprinted polymer inside a trench micro-machined in double plastic optical fiber. Procedia Eng. 2016, 168, 363–366. [Google Scholar] [CrossRef]
- Cennamo, N.; Testa, G.; Marchetti, S.; De Maria, L.; Bernini, R.; Zeni, L.; Pesavento, M. Intensity-based plastic optical fiber sensor with molecularly imprinted polymer sensitive layer. Sens. Actuators B Chem. 2017, 241, 534–540. [Google Scholar] [CrossRef]
- Zeni, L.; Pesavento, M.; Marchetti, S.; Cennamo, N. [invited] slab plasmonic platforms combined with plastic optical fibers and molecularly imprinted polymers for chemical sensing. Opt. Laser Technol. 2018, 107, 484–490. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Usha, S.P.; Gupta, B.D. A localized and propagating spr, and molecular imprinting based fiber-optic ascorbic acid sensor using anin situpolymerized polyaniline–Ag nanocomposite. Nanotechnology 2016, 27, 345501. [Google Scholar] [CrossRef] [PubMed]
- Usha, S.P.; Gupta, B.D. Urinary p-cresol diagnosis using nanocomposite of zno/mos2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor. Biosens. Bioelectron. 2018, 101, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; D’Agostino, G.; Porto, G.; Biasiolo, A.; Perri, C.; Arcadio, F.; Zeni, L. A molecularly imprinted polymer on a plasmonic plastic optical fiber to detect perfluorinated compounds in water. Sensors 2018, 18, 1836. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-n.; Zhao, Y.; Lv, R.-q. A review for optical sensors based on photonic crystal cavities. Sens. Actuators A Phys. 2015, 233, 374–389. [Google Scholar] [CrossRef] [Green Version]
- De La Rue, R.M.; Seassal, C. Photonic crystal devices: Some basics and selected topics. Laser Photonics Rev. 2012, 6, 564–597. [Google Scholar] [CrossRef]
- Chen, W.; Meng, Z.; Xue, M.; Shea Kenneth, J. Molecular Imprinted Photonic Crystal for Sensing of Biomolecules. In Molecular Imprinting; The Royal Society of Chemistry: London, UK, 2016; Volume 4, p. 1. [Google Scholar]
- Sai, N.; Ning, B.; Huang, G.; Wu, Y.; Zhou, Z.; Peng, Y.; Bai, J.; Yu, G.; Gao, Z. An imprinted crystalline colloidal array chemical-sensing material for detection of trace diethylstilbestrol. Analyst 2013, 138, 2720–2728. [Google Scholar] [CrossRef] [PubMed]
- Kadhem, A.J.; Xiang, S.; Nagel, S.; Lin, C.-H.; Fidalgo de Cortalezzi, M. Photonic molecularly imprinted polymer film for the detection of testosterone in aqueous samples. Polymers 2018, 10, 349. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lei, W.; Xue, M.; Xue, F.; Meng, Z.-h.; Zhang, W.-b.; Qu, F.; Shea, K.J. Protein recognition by a surface imprinted colloidal array. J. Mater. Chem. A 2014, 2, 7165–7169. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, K.-Q. Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 2013, 13, 4192–4213. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lin, Z.; Huang, Z.; Peng, A. Rapid detection of sulfaguanidine in fish by using a photonic crystal molecularly imprinted polymer. Food Chem. 2019, 281, 57–62. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Ren, H.-H.; Yu, L.-P. Development of molecularly imprinted photonic polymers for sensing of sulfonamides in egg white. Anal. Methods 2018, 10, 101–108. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, J.; He, Y.; Zhang, T.; Hao, R.; Shi, A.; Enciso, E. Enhanced fluorescence detection of enrofloxacin with curved-surface responsive inverse opal polymers and molecular imprinting. Anal. Methods 2019, 11, 1043–1052. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, Y.; Bai, J.; Sun, Z.; Ning, B.; Li, S.; Wang, J.; Peng, Y.; Gao, Z. Novel biomimic crystalline colloidal array for fast detection of trace parathion. ACS Sens. 2017, 2, 1013–1019. [Google Scholar] [CrossRef]
- Lu, W.; Dong, X.; Qiu, L.; Yan, Z.; Meng, Z.; Xue, M.; He, X.; Liu, X. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules. J. Hazard. Mater. 2017, 326, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Shi, W.; Cheng, M.; Liao, S.; Zhou, J.; Wu, Z. Molecularly imprinted photonic hydrogel sensor for optical detection of l-histidine. Microchim. Acta 2018, 185, 557. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Cheng, Y.; Gao, Z.; Zhang, H.; Wei, J. Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring. Sens. Actuators B Chem. 2018, 273, 1705–1712. [Google Scholar] [CrossRef]
- Dai, J.; Zambrana, M.; Fidalgo, M. Amino-functionalized fluorescent carbon dots for chemical sensing. MRS Adv. 2016, 1, 1365–1370. [Google Scholar] [CrossRef]
Composition | Polymerization | Detection | Analyte | LOD | Ref. |
---|---|---|---|---|---|
Au slide-MIP | GT Drop deposition | SPR–SPRi | Ciprofloxacin | 0.08 μg L−1 | [58] |
Glass-Au nIsland-MIP | GT Spin-coating | LSPR | α-pinene | 304 ppm | [60] |
Au slide-MIP | GT Spin-coating | SPR | Anti-CCP | 0.177 RU mL−1 | [61] |
Au slide-MIP film | GT Spin-coating | SPR | Amoxicillin | 73 pM | [62] |
Au slide-MIP | GF Polymerizable functionality | SPR | RoxP | 0.23 nM | [64] |
Au slide-MIP | GF Polymerizable functionality | SPR | Salmonella paratyphi | 1.4 × 106 CFU mL−1 | [65] |
Au slide-MIP | GF RAFT (Iniferter) | SPR | BSA | 5.6 nM | [66] |
Au slide/Ab/MIP | GF Monomer/Template immobilization | FL | Intact exosomes | 6 pg mL−1 | [67] |
Au slide-β-CD/MIP | GF Monomer/Template immobilization | FL | Cortisol | 4.8 pM | [68] |
Au slide-MIP hydrogel | GF SI-ATRP | SPR | Lectin ConA | n. d. | [69] |
Au slide-MIP | GF SI-ATRP | SPR | OVA | 6.1 ng mL−1 | [70] |
Au slide-MIP | GT Electropolymerization | SPR | Histamine | 2 μg mL−1 | [71] |
Au-MIP needles | GF Monomer/Template immobilization | SERS | Glucose/Fructose | 1 μg mL−1 | [72] |
Au slide-nMIPs | nMIP immobilization | SPR | Enterococcus faecalis | 1.05 × 102 CFU mL−1 | [73] |
Au slide-nMIPs | nMIP immobilization | SPR | α-casein | 127 ng mL−1 | [74] |
Au slide-nMIPs | nMIP immobilization | SPR | Vancomycin | 4.1 ng mL−1 | [75] |
Glass-Au nanodisk-MIP | GF Monomer/Template immobilization | LSPR | Astringency * | n. d. | [76] |
Au slide-MIP | GF Polymerizable functionality | SPR | Kanamycin | 12 nM | [77] |
Au slide-GR/MIP | GT In situ polymerization | SPR | L-tryptophan | 0.105 mM | [78] |
Glass-Au nIsland-MIP | GT Deposition polymerization | LSPR | VOCs | n.d. | [79] |
Composition | Polymerization | Detection | Analyte | LOD | Ref. |
---|---|---|---|---|---|
GS–MIP | GT Deposition polymerization | IF | BSA | 8.01 pg L−1 | [59] |
Quartz chip–MIP | GF Polymerizable functionality | FL | IBA | n. d. | [80] |
GS–Zn porphyrin–MIP | GF Polymerizable functionality | FL | DMMP | 0.1 μM | [81] |
GS–MIP | MIP immobilization | SERS | Acid phosphatase | 0.1 ng L−1 | [82] |
GS–nMIPs | nMIP immobilization | RIfS | PenG | 4.32 mM | [83] |
b-Si–Au–MIP | GT Deposition polymerization | SERS | Tetracycline | n.d. | [84] |
Composition | Polymerization | Detection | Analyte | LOD | Ref. |
---|---|---|---|---|---|
CPE–MIP | Mixed MIP-CP | ECL | Azithromycin | 23 pM | [87] |
GCE-MIP | GT Electropolymerization | ECL | E. coli O157:H7 | 8 CFU mL−1 | [88] |
GCE–rGO–UCNPs-MIP | GT Electropolymerization | ECL | Clenbuterol | 6.3 nM | [89] |
GCE-CNT-AuNP-MIP | GT Electropolymerization | ECL | Triazophos | 3.1 ng L−1 | [90] |
Au/[Ru(bpy)3]2+/MWCNTs/nTiO2-MIP | MIP Deposition | ECL | Bisphenol A | 4.1 ng L−1 | [91] |
GCE-RUDS/MIP | MIP drop-cast | ECL | Melamine | 500 fM | [92] |
GCE-Ru@ethyl-SiO2-MIP | GT Electropolymerization | ECL | 17ß-Estradiol | 5 pg L−1 | [93] |
GCE–AuNPs-Ru@SiO2-MIP | GT Drop deposition | ECL | Fumonisin B1 | 0.35 pg mL−1 | [94] |
GCE-CdTe-Ru@SiO2-MIP | GT Drop deposition | ECL | α-ergocryptine OTA | 0.18 fg mL−1 0.25 fg mL−1 | [95] |
GCE–GO-Au–Aptamer-CDs/MIP | GT Electropolymerization | ECL | Lincomycin | 160 fM | [96] |
ITO–GO/CDs-MIP | GT Electropolymerization | FL | Virginiamycin | 15.6 pM | [97] |
ITO-IrOx NPs–MIP | GT Drop deposition | EC | Chlorpyrifos | 0.1 pM | [98] |
ITO-GO-Fe3O4/NiNCs/MIP | GF Polymerizable functionality | ECL | Creatinine | 0.5 nM | [99] |
GE–QD-MIP | GT Electropolymerization | ECL | Clopyralid | 4.1 pM | [100] |
GCE–AuNPs/GO–MIP | GF Monomer/Template immobilization | ECL | Alpha-fetoprotein | 0.4 ng L−1 | [101] |
Composition | Polymerization | Detection | Analyte | LOD | Ref. |
---|---|---|---|---|---|
ZnO NRs@MIP | GT Coating | FL | Tetracycline | 1.27 μM | [103] |
ZnO/Ag NRs@MIPs | GF Polymerizable functionality | SERS | R6G | 10 pM | [105] |
MoO3 NRs@MIP | GF Polymerizable functionality | SERS | Methylene blue | 0.16 mM | [106] |
ZnO NRs@MIPs | GF Polymerizable functionality | FL | DEHP | 1.83 nM | [107] |
Composition | Polymerization | Detection | Analyte | LOD | Ref. |
---|---|---|---|---|---|
Fe3O4@MIP | GT Coating | RLS | HAV | 6.2 pM | [109] |
Fe3O4@SiO2@MIP | GF Polymerizable functionality | FL | Rhodamine B | 0.1 nM | [110] |
Fe3O4@Au@MIP | GT Coating | ECL | Cinchonine | 0.313 pM | [111] |
Fe3O4@MIP/QDs | GT Coating | FL | NDPhA | 0.69 μM | [112] |
Fe3O4@SiO2@MIP | GT Coating | ECL | Diethylstilbestrol | 0.1 pg mL−1 | [113] |
Fe3O4@SiO2@QDs@MIP | GF Polymerizable functionality | FL | Dibutyl phthalate | 80 nM | [114] |
Composition | Polymerization | Detection | Analyte | LOD | Ref. |
---|---|---|---|---|---|
UCNPs@Apta-MIP | GT Coating | FL | Enrofloxacin | 0.04 ng mL−1 | [116] |
UCNPs@MIPs–AgNPs | GT Coating | FL SERS | Histamine | 9 μg L−1 | [117] |
UCNPs@SiO2@MIP | GF Polymerizable functionality | FL | Diethylstilbestrol | 12.8 ng mL−1 | [118] |
UCP@Fe3O4@MIP | GT Coating | FL | Enrofloxacin Ciprofloxacin Enoxacin Fleroxacin Levofloxacin | 2.50 × 10−7 M 1.24 × 10−6 M 1.12 × 10−6 M 4.06 × 10−7 M 1.47 × 10−6 M | [119] |
Composition | Polymerization | Detection | Analyte | LOD | Ref. |
---|---|---|---|---|---|
CdSe/ZnS@SiO2@MIP | GT Coated | FL | DMHF C4-HSL C6-HSL C8-HSL N-3oxo-C6-HSL | 0.66 nM 0.54 nM 0.88 nM 0.72 nM 0.68 nM | [121] |
CdTe@MIP | GT Coated | RFL | BHb | 9.6 nM | [122] |
FeSe@MIP | GT Coated | FL | Cyfluthrin | 1.0 μg kg−1 | [123] |
Mn:ZnS@MIP | GT Entrapped | FL | Sulfapyridine | 0.5 μM | [124] |
CsPbBr3@MIP | GT Coated | FL | Omethoate | 18.8 μg L−1 | [125] |
CDs@MIP | GT Coated | FL | R6G | n.d. | [126] |
GDs@MIP | GT Entrapped | FL | Ornidazole | 0.24 μM | [127] |
CdTe@SiO2@MIP | GT Coated | FL | Neomycin | 0.16 μg L−1 | [128] |
MIP@CdSe | GF Polymerizable functionality | FL | Kanamycin | 13 μg L−1 | [129] |
Gra-CdSe/ZnS@MIP | GT Entrapped | FL | Tyramine | 21 μg L−1 | [130] |
CdSe@SiO2/CD/MIP | GT Coated | RFL | 4-nitrophenol | 26 ng L−1 | [131] |
CDs@SiO2@MIP/CdTe | GT Coated | RFL | Celecoxib | 57 nM | [132] |
CdTe/ZnQ2@mMIP | GT Coated | RFL | Brilliant Blue | 8.8 nM | [133] |
GDs@MIPCdTe@MIP | GF Polymerizable functionality | FL | Cephalexin Ceftriaxone | 0.06 μg L−1 0.10 μg L−1 | [134] |
CDs@MIP | GT Coated | FL | Phenobarbital | 0.1 nM | [135] |
CdTe@MIP | GT Coated | RFL | Phycocyanin | 3.2 nM | [136] |
CDs@SiO2@MIP/CdTe | GT Coated | RFL | Sulfadiazine | 0.042 μM | [137] |
CdSe/ZnS@MIP | GF Polymerizable functionality | FL | Acetaminophen | 0.34 nM | [138] |
Mn:ZnS @MIP | GF Polymerizable functionality | FL | Cyt C | 0.054 μM | [139] |
MIP@CDs | GT Entrapped | FL | 3-nitrotyrosine | 17 nM | [140] |
MIP@CDs | GT Coated | FL | PrHy | 0.5 μM | [141] |
MIP@CDs | GT Coated | FL | Tetracycline | 9 nM | [142] |
Mn:ZnS@MIP | GT Coated | FL | Cocaine | 15–35 μg L−1 | [143] |
Mn:ZnS@SiO2@MIPs | GT Entrapped | FL | Serotonin | 0.69 μg L−1 | [144] |
CDs@MIP | GT Coated | FL | 3-MCPD | 0.6 μg L−1 | [145] |
CdTe@SiO2@MIP | GF Polymerizable functionality | FL | TBBPA | 0.3 μg L−1 | [146] |
ZnO@MIP | GT Coated | FL | THZ | 0.43 nM | [147] |
CDs@MIP | GT Entrapped | FL | Acetamiprid | 2 nM | [148] |
CdTe/CdS@MIP | GT Entrapped | FL | PFOA | 25 nM | [149] |
CdTe@MIPs | GF Polymerizable functionality | FL | p-coumaric acid | 6.74 ng L−1 | [150] |
Composition | Polymerization | Detection | Analyte | LOD | Ref. |
---|---|---|---|---|---|
AuNPs@nanoNIPs | GT Embedding | SERS | Sudan IV | n.d. | [152] |
bAuNPs@mSiO2@MIP | GF RAFT | SERS | Enrofloxacin | 1.5 nM | [153] |
AuNP@CD/MIP | GT Coating | ECL | Tb3+ | 39 pM | [154] |
AgNPs@MIP (different shapes) | GF Initiator immobilization (ATRP) | PL | Phenformin | * | [155] |
Ag@QDs@MIPs | GT ATRP | SERS | 2,6-DCP | 1 μM | [156] |
AuNPs/MIP–SPR Chip | GT Embedding | SPR | RDX | 10 fM | [157] |
Ag@MIP | GF Polymerizable functionality | SERS | Cyhalothrin | 13 nM | [158] |
MIPs/AgNPs | GT Embedding | SERS | Bisphenol A | 0.5 μM | [159] |
Composition | Polymerization | Detection | Analyte | LOD | Ref. |
---|---|---|---|---|---|
SiO2@FMIPs | GT Coating | FL | JEV | 9.6 pM | [160] |
SiO2@MIP | GT Coating | RLS | HAV | 8.6 pM | [161] |
SiO2@MIP | GF Polymerizable functionality | RLS | OVA | 0.13 nM | [162] |
SiO2@FMIPs | GF Polymerizable functionality | FL | τ-fluvalinate | 12.14 nM | [163] |
SiO2@FMIP | GF RAFT | FL | 2,4-D | 28 nM | [164] |
SiO2@Ag@MIPs | GF Polymerizable functionality | SERS | R6G | 1 pM | [165] |
SiO2@AgNPs@MIP | GT Coating | SERS | Bisphenol A | 0.146 pM | [166] |
SiO2@AuNPs@MIPs | GT Coating | FL | Haemoglobin | 0.03 μM | [167] |
SiO2@QDs@MIP | GF ATRP | FL | λ-cyhalothrin | 0.13 μM | [168] |
SiO2@QDs@MIP | GF Polymerizable functionality | FL | Dibutyl phthalate | 0.04 μM | [169] |
SiO2@QDs@m-MIP | GT Coating | FL | 2,4-D | 2.1 nM | [170] |
SiO2@FMIP | GT Coating | FL | τ-fluvalinate | 13.251 nM | [171] |
SiO2@QDs@m-MIP | GT Coating | RTP | Transferrin | 14 nM | [172] |
Composition | Polymerization | Detection | Analyte | LOD | Ref. |
---|---|---|---|---|---|
POF-Gold-MIP | GT Deposition | SPR | DBDS Furfural | 0.346 μM 0.048 μM | [183] |
Double POF-MIP | GT Deposition | SPR | DBDS | 50 μM | [184] |
Double POF-MIP | GT Deposition | SPR | DBDS | 53 μM | [185] |
POF-Gold-MIP | GT Deposition | SPR | Furfural | 0.03 ppm | [186] |
POF–MIP-Ag | GT Coating | LSPR + SPR | Ascorbic acid | 0.74 pM | [187] |
POF-ZnO/MoS2-MIP | LMR | p-cresol | 28 nM | [188] | |
POF-Gold-MIP | GT Deposition | SPR | Perfluorinated Compounds | 0.13 ppb | [189] |
Composition | Detection | Analyte | LOD | Ref. |
---|---|---|---|---|
PC-MIP | Red shift Reflection | Sulfaguanidine | 0.28 nM | [197] |
MIPPs | Blue-shift Diffraction | Sulfonamides | 3.8 µM * | [198] |
Imprinted RIOPs | FL | Enrofloxacin | 0.082 ppb | [199] |
Au-MIP IO PCs | Red shift | Parathion | 1 ng L−1 * | [200] |
PC-MIP | Colorimetric array Diffraction | TNT2, 6-DNT2, 4-DNT 4-MNT | 3.53 µg 2.42 µg 4.85 µg 2.14 µg | [201] |
MIPH | Red shift Diffraction | L-histidine | 10 pM | [202] |
MIP IO spheres | Red shift Reflection | MPA | 1 µM * | [203] |
CC–MIP-CDs | FL | 2,4-DNT | 1 mM * | [204] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rico-Yuste, A.; Carrasco, S. Molecularly Imprinted Polymer-Based Hybrid Materials for the Development of Optical Sensors. Polymers 2019, 11, 1173. https://doi.org/10.3390/polym11071173
Rico-Yuste A, Carrasco S. Molecularly Imprinted Polymer-Based Hybrid Materials for the Development of Optical Sensors. Polymers. 2019; 11(7):1173. https://doi.org/10.3390/polym11071173
Chicago/Turabian StyleRico-Yuste, Alberto, and Sergio Carrasco. 2019. "Molecularly Imprinted Polymer-Based Hybrid Materials for the Development of Optical Sensors" Polymers 11, no. 7: 1173. https://doi.org/10.3390/polym11071173
APA StyleRico-Yuste, A., & Carrasco, S. (2019). Molecularly Imprinted Polymer-Based Hybrid Materials for the Development of Optical Sensors. Polymers, 11(7), 1173. https://doi.org/10.3390/polym11071173