Assembly of Polyacrylamide-Sodium Alginate-Based Organic-Inorganic Hydrogel with Mechanical and Adsorption Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Hybrid Hydrogels
2.3. Characterizations
2.3.1. Morphology of Inorganic Nanoparticle Dispersions and Prepared Hydrogels
2.3.2. Density and Water Content of Hydrogels
2.3.3. Formation of 3D Network and Structural Analysis of NC
2.3.4. Compressive and Rheological Measurements
2.3.5. Adsorption/desorption of Metal Ion (Cu2+)
3. Results and Discussion
3.1. Morphology of IPN-Structured Hydrogels and Inorganic Nanoparticles
3.2. Formation Mechanism for Hybrid Hydrogels
3.3. Mechanical Properties
3.4. Rheological Characterization
3.5. Adsorption Performances
3.6. Reusability of Hydrogels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, Z.; Chen, H.; Zhang, H.; Ma, L.; Wang, Z. Polyacrylamide-phytic acid-polydopamine conducting porous hydrogel for rapid detection and removal of copper (II) ions. Biosens. Bioelectron. 2017, 91, 306–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godiya, C.B.; Cheng, X.; Li, D.; Chen, Z.; Lu, X. Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J. Hazard. Mater. 2019, 364, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, W.; Wu, S.; Tang, G.; Cui, J.; Zhang, Q.; Chen, F.; Xiong, R.; Huang, C. Electrospun frogspawn structured membrane for gravity-driven oil-water separation. J. Colloid Interface Sci. 2019, 547, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, W.; Zhang, M.; Zhang, Q.; Xiong, R.; Huang, C. Fabrication of superhydrophobic electrospun polyimide nanofibers modified with polydopamine and polytetrafluoroethylene nanoparticles for oil-water separation. J. Appl. Polym. Sci. 2019, 136, 47638. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, G.; Chu, L.; Liu, Y.; Liu, C.; Luo, S.; Wei, Y. Efficient Removal of Heavy Metal Ions with an EDTA Functionalized Chitosan/Polyacrylamide Double Network Hydrogel. ACS Sustain. Chem. Eng. 2017, 5, 843–851. [Google Scholar] [CrossRef]
- Sun, X.-F.; Ye, Q.; Jing, Z.; Li, Y. Preparation of Hemicellulose-g-Poly(methacrylic acid)/Carbon Nanotube Composite Hydrogel and Adsorption Properties. Polym. Compos. 2014, 35, 45–52. [Google Scholar] [CrossRef]
- Nguyen, K.D.; Trang, T.T.C.; Kobayashi, T. Chitin-halloysite nanoclay hydrogel composite adsorbent to aqueous heavy metal ions. J. Appl. Polym. Sci. 2019, 136, 47207. [Google Scholar] [CrossRef]
- Olad, A.; Zebhi, H.; Salari, D.; Mirmohseni, A.; Reyhanitabar, A. A promising porous polymer-nanoclay hydrogel nanocomposite as water reservoir material: Synthesis and kinetic study. J. Porous Mater. 2018, 25, 665–675. [Google Scholar] [CrossRef]
- Chatterjee, S.; Lee, M.W.; Woo, S.H. Enhanced mechanical strength of chitosan hydrogel beads by impregnation with carbon nanotubes. Carbon 2009, 47, 2933–2936. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, X.; Han, J.; Yu, L.; Chen, J.; Wu, Q.; Jiang, J. Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities. Carbohydr. Polym. 2019, 206, 289–301. [Google Scholar] [CrossRef]
- Bahrami, Z.; Akbari, A.; Eftekhari-Sis, B. Double network hydrogel of sodium alginate/polyacrylamide cross-linked with POSS: Swelling, dye removal and mechanical properties. Int. J. Biol. Macromol. 2019, 129, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Oladipo, A.A.; Gazi, M. Microwaves initiated synthesis of activated carbon-based composite hydrogel for simultaneous removal of copper(II) ions and direct red 80 dye: A multi-component adsorption system. J. Taiwan Inst. Chem. Eng. 2015, 47, 125–136. [Google Scholar] [CrossRef]
- Fan, J.; Shi, Z.; Lian, M.; Li, H.; Yin, J. Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J. Mater. Chem. A 2013, 1, 7433–7443. [Google Scholar] [CrossRef]
- Chatterjee, S.; Lee, M.W.; Woo, S.H. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour. Technol. 2010, 101, 1800–1806. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Liu, Z.; Yang, C.; Wang, W.; Ju, X.-J.; Xie, R.; Chu, L.-Y. Smart Hydrogels with Inhomogeneous Structures Assembled using Nanoclay-Cross-Linked Hydrogel Subunits as Building Blocks. ACS Appl. Mater. Interfaces 2016, 8, 21721–21730. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Jin, J.; Wang, Z.; Yin, H.; Wei, C.; Xu, X. Encapsulating nanosilica into polyacrylic acid and chitosan interpenetrating network hydrogel for preconcentration of uranium from aqueous solutions. J. Radioanal. Nucl. Chem. 2018, 317, 1299–1309. [Google Scholar] [CrossRef]
- Hayati, B.; Maleki, A.; Najafi, F.; Gharibi, F.; Mckay, G.; Gupta, V.K.; Marzban, N. Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. Chem. Eng. J. 2018, 346, 258–270. [Google Scholar] [CrossRef]
- Pei, H.; Wufeng, C.; Lifeng, Y. An inorganic-organic double network hydrogel of graphene and polymer. Nanoscale 2013, 5, 6034–6039. [Google Scholar]
- Wang, J.; Zheng, S.; Shao, Y.; Liu, J.; Xu, Z.; Zhu, D. Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid Interface Sci. 2010, 349, 293–299. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Tehrani, Z.M.; Salimi, H.; Banazadeh, A.; Abedini, N. Hydrogel nanocomposite based on chitosan-g-acrylic acid and modified nanosilica with high adsorption capacity for heavy metal ion removal. Iran. Polym. J. 2015, 24, 725–734. [Google Scholar] [CrossRef]
- Wu, N.; Li, Z. Synthesis and characterization of poly(HEA/MALA) hydrogel and its application in removal of heavy metal ions from water. Chem. Eng. J. 2013, 215–216, 894–902. [Google Scholar] [CrossRef]
- Haraguchi, K.; Li, H.J.; Ren, H.Y.; Zhu, M. Modification of Nancomposite Gels by Irreversible Rearrangement of Polymer/Clay Network Structure through Drying. Macromolecules 2010, 43, 9848–9853. [Google Scholar] [CrossRef]
- Kumar, A.; Rao, K.M.; Han, S.S. Synthesis of mechanically stiff and bioactive hybrid hydrogels for bone tissue engineering applications. Chem. Eng. J. 2017, 317, 119–131. [Google Scholar] [CrossRef]
- Al-Kahtani, A.A.; Sherigara, B.S. Semi-interpenetrating network of acrylamide-grafted-sodium alginate microspheres for controlled release of diclofenac sodium, preparation and characterization. Colloids Surf. B Biointerfaces 2014, 115, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Mittal, H.; Maity, A.; Ray, S.S. Synthesis of co-polymer-grafted gum karaya and silica hybrid organic–inorganic hydrogel nanocomposite for the highly effective removal of methylene blue. Chem. Eng. J. 2015, 279, 166–179. [Google Scholar] [CrossRef]
- Gharekhani, H.; Olad, A.; Mirmohseni, A.; Bybordi, A. Superabsorbent hydrogel made of NaAlg-g-poly(AA-co-AAm) and rice husk ash: Synthesis, characterization, and swelling kinetic studies. Carbohydr. Polym. 2017, 168, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, A. Study on superabsorbent composites. IX: Synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. React. Funct. Polym. 2007, 67, 737–745. [Google Scholar] [CrossRef]
- Giri, T.K.; Thakur, D.; Alexander, A.; Badwaik, H.; Tripathy, M.; Tripathi, D.K. Biodegradable IPN hydrogel beads of pectin and grafted alginate for controlled delivery of diclofenac sodium. J. Mater. Sci. Mater. Med. 2013, 24, 1179–1190. [Google Scholar] [CrossRef]
- Rangel-Rivera, P.; Bachiller-Baeza, M.B.; Galindo-Esquivel, I.; Rangel-Porras, G. Inclusion of Ti and Zr species on clay surfaces and their effect on the interaction with organic molecules. Appl. Surf. Sci. 2018, 445, 229–241. [Google Scholar] [CrossRef]
- Neira-Velazquez, M.G.; Ramos-deValle, L.F.; Hernandez-Hernandez, E.; Ponce-Pedraza, A.; Solis-Rosales, S.G.; Sanchez-Valdez, S.; Bartolo-Perez, P.; Gonzalez-Gonzalez, V.A. Surface Modification of Nanoclays by Plasma Polymerization of Ethylene. Plasma Process. Polym. 2011, 8, 842–849. [Google Scholar] [CrossRef]
- Ferenczi, A.M.; Demri, B.; Moritz, M.; Muster, D. Casted titanium for dental applications: An XPS and SEM study. Biomaterials 1998, 19, 1513–1515. [Google Scholar] [CrossRef]
- Hao, F.; Zhong, J.; Liu, P.L.; You, K.Y.; Wei, C.; Liu, H.J.; Luo, H.A. Preparation of mesoporous SiO2–Al2O3 supported Co or Mn catalysts and their catalytic properties in cyclohexane nitrosation to ɛ-caprolactam. J. Mol. Catal. A Chem. 2011, 351, 210–216. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, M.; Wang, M.; Song, X.; Zhang, C.; Dong, Z.; Zhang, J.; Yang, Z. Polymerizable Microsphere-Induced High Mechanical Strength of Hydrogel Composed of Acrylamide. Materials 2018, 11, 880. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Zhang, G.; Zeng, X.; Li, J.; Li, G.; Huang, W.; Sun, R.; Wong, C. High-Strength, Tough, Fatigue Resistant, and Self-Healing Hydrogel Based on Dual Physically Cross-Linked Network. ACS Appl. Mater. Interfaces 2016, 8, 24030–24037. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Liang, X.; Guo, J.; Zhu, K.; Zhang, L. Ultra-Stretchable and Force-Sensitive Hydrogels Reinforced with Chitosan Microspheres Embedded in Polymer Networks. Adv. Mater. 2016, 28, 8037–8044. [Google Scholar] [CrossRef] [PubMed]
- Harrass, K.; Krüger, R.; Möller, M.; Albrecht, K.; Groll, J. Mechanically strong hydrogels with reversible behaviour under cyclic compression with MPa loading. Soft Matter 2013, 9, 2869–2877. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L. Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr. Polym. 2011, 83, 1937–1946. [Google Scholar] [CrossRef]
- Suriano, R.; Griffini, G.; Chiari, M.; Levi, M.; Turri, S. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis. J. Mech. Behav. Biomed. Mater. 2014, 30, 339–346. [Google Scholar] [CrossRef]
- He, S.; Zhang, F.; Cheng, S.; Wang, W. Synthesis of sodium acrylate and acrylamide copolymer/GO hydrogels and their effective adsorption for Pb2+ and Cd2+. ACS Sustain. Chem. Eng. 2016, 4, 3948–3959. [Google Scholar] [CrossRef]
- Liu, R.; Ji, Z.; Jing, W.; Zhang, J. Solvothermal fabrication of TiO2/sepiolite composite gel with exposed {0 0 1} and {1 0 1} facets and its enhanced photocatalytic activity. Appl. Surf. Sci. 2018, 441, 29–39. [Google Scholar] [CrossRef]
- Irani, M.; Ismail, H.; Ahmad, Z.; Fan, M. Synthesis of linear low-density polyethylene-g-poly(acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(II) from aqueous solutions. J. Environ. Sci. 2015, 27, 9–20. [Google Scholar] [CrossRef]
- Rui, X.; Zhou, G.; Tang, Y.; Lin, C.; Liu, C.; Zeng, Z.; Luo, S. New double network hydrogel adsorbent: Highly efficient removal of Cd(II) and Mn(II) ions in aqueous solution. Chem. Eng. J. 2015, 275, 179–188. [Google Scholar]
- Cabaniss, S.E. Forward modeling of metal complexation by NOM: II. prediction of binding site properties. Environ. Sci. Technol. 2011, 45, 3202–3209. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Xiao, L. Adsorption of Cu(II) ion from aqueous solutions on hydrogel prepared from Konjac glucomannan. Polym. Bull. 2016, 73, 1965–1984. [Google Scholar] [CrossRef]
- Ali, E.H.; Shawky, H.A.; Rehim, H.A.A.E.; Hegazy, E.A. Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. Eur. Polym. J. 2003, 39, 2337–2344. [Google Scholar]
- Milosavljević, N.; Debeljković, A.; Krušić, M.K.; Milašinović, N.; Üzüm, Ö.B.; Karadağ, E. Application of poly(acrlymide-co-sodium methacrylate) hydrogels in copper and cadmium removal from aqueous solution. Environ. Prog. Sustain. Energy 2014, 33, 824–834. [Google Scholar] [CrossRef]
- Chen, A.H.; Liu, S.C.; Chen, C.Y.; Chen, C.Y. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J. Hazard. Mater. 2008, 154, 184–191. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Ray, S.K. Enhanced adsorption of synthetic dyes from aqueous solution by a semi-interpenetrating network hydrogel based on starch. J. Ind. Eng. Chem. 2014, 20, 3714–3725. [Google Scholar] [CrossRef]
- Chung, H.K.; Kim, W.H.; Park, J.; Cho, J.; Jeong, T.Y.; Park, P.K. Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. J. Ind. Eng. Chem. 2015, 28, 241–246. [Google Scholar] [CrossRef]
- Ge, H.; Huang, H.; Xu, M.; Chen, Q. Cellulose/poly(ethylene imine) composites as efficient and reusable adsorbents for heavy metal ions. Cellulose 2016, 23, 2527–2537. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Ray, S.K. Adsorption of industrial dyes by semi-IPN hydrogels of Acrylic copolymers and sodium alginate. J. Ind. Eng. Chem. 2015, 22, 92–102. [Google Scholar] [CrossRef]
- Ghorai, S.; Sarkar, A.K.; Panda, A.B.; Pal, S. Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresour. Technol. 2013, 144, 485–491. [Google Scholar] [CrossRef]
- Maryam Ahmadzadeh, T.; Toraj, M. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J. Hazard. Mater. 2011, 185, 140–147. [Google Scholar]
Hydrogels | Stress σ at ε = 60% (MPa) | Energy Absorption at ε = 60% (kJ/m3) | Specific Stress σs at ε = 60% (MPa·cm3/g) |
---|---|---|---|
PAAM-SA | 0.27 ± 0.1 | 3.3 ± 0.32 | ≈0.2 |
PAAM-SA-CNT | 0.43 ± 0.17 | 5.4 ± 0.4 | ≈0.3 |
PAAM-SA-NC | 0.73 ± 0.21 | 8.2 ± 0.38 | ≈0.5 |
PAAM-SA-NS | 1.3 ± 0.23 | 13.5 ± 0.45 | ≈0.9 |
Adsorbent | Isotherm | Temperature (°C) | qe (mg/g) | Reference |
---|---|---|---|---|
Konjac glucomannan-poly(acrylic acid) hydrogel | L | 25 | 27 | [44] |
Poly(vinylpyrrolidone/acrylic acid) hydrogel | L | 25 | 23 | [45] |
Fe3O4-SiO2 NPs | L | 25 | 29.85 | [19] |
Poly(hydroxyethyl methacrylate/maleamic acid) hydrogel | L | 25 | 10.24 | [21] |
Poly(acrylamide-co-sodium methacrylate) hydrogel | L | 25 | 24.05 | [46] |
Chitosan | L | 25 | 35.46 | [47] |
PAAM-SA-CNT | L | 25 | 46 | This work |
Sample | qm (exp) (mg/g) | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|---|
qm (mg/g) | KL (L/mg) | R2 | RL | KF (mg/g) | 1/n | R2 | ||
PAAM-SA-CNT | 46 | 48.5 | 0.11 | 0.998 | 0.06–0.31 | 13.27 | 0.274 | 0.934 |
PAAM-SA-NC | 42.4 | 46.7 | 0.08 | 0.994 | 0.08–0.38 | 11.2 | 0.291 | 0.929 |
PAAM-SA-NS | 38.9 | 42.5 | 0.09 | 0.997 | 0.07–0.35 | 11.68 | 0.264 | 0.918 |
PAAM-SA | 35.7 | 40.8 | 0.06 | 0.993 | 0.1–0.45 | 8.11 | 0.318 | 0.933 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Y.; Wang, X.; Wu, Q.; Han, J.; Jiang, J. Assembly of Polyacrylamide-Sodium Alginate-Based Organic-Inorganic Hydrogel with Mechanical and Adsorption Properties. Polymers 2019, 11, 1239. https://doi.org/10.3390/polym11081239
Yue Y, Wang X, Wu Q, Han J, Jiang J. Assembly of Polyacrylamide-Sodium Alginate-Based Organic-Inorganic Hydrogel with Mechanical and Adsorption Properties. Polymers. 2019; 11(8):1239. https://doi.org/10.3390/polym11081239
Chicago/Turabian StyleYue, Yiying, Xianhui Wang, Qinglin Wu, Jingquan Han, and Jianchun Jiang. 2019. "Assembly of Polyacrylamide-Sodium Alginate-Based Organic-Inorganic Hydrogel with Mechanical and Adsorption Properties" Polymers 11, no. 8: 1239. https://doi.org/10.3390/polym11081239
APA StyleYue, Y., Wang, X., Wu, Q., Han, J., & Jiang, J. (2019). Assembly of Polyacrylamide-Sodium Alginate-Based Organic-Inorganic Hydrogel with Mechanical and Adsorption Properties. Polymers, 11(8), 1239. https://doi.org/10.3390/polym11081239