Hydrogel Functionalized Polyester Fabrics by UV-Induced Photopolymerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Modification of PET Fabrics with Hydrogels
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mittal, K.L.; Bahners, T. Textile Finishing: Recent Developments and Future Trends; Scrivener Publishing: Beverly, MA, USA, 2017. [Google Scholar]
- Fahmy, H.M.; Eid, R.A.A.; Nada, D.E.; El-Aziz, S.M.A. Functionalizaton of Linen Fabric Using Poly (N-vinyl-2-pyrrolidone). Egypt. J. Chem. 2015, 58, 447–458. [Google Scholar]
- Ballottin, D.; Fulaz, S.; Cabrini, F.; Tsukamoto, J.; Durán, N.; Alves, O.L.; Tasic, L. Antimicrobial Textiles: Biogenic Silver Nanoparticles Against candida and xanthomonas. Mater. Sci. Eng. C 2017, 75, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Paul, R. Functional finishes for textiles: An overview. In Woodhead Publishing Series in Textiles; Woodhead Publishing: Cambridge, UK, 2015; pp. 1–14. [Google Scholar]
- Radetić, M. Functionalization of Textile Materials with Silver Nanoparticles. J. Mater. Sci. 2013, 48, 95–107. [Google Scholar] [CrossRef]
- Butola, B.S. Advances in Functional Finishes for Polyester and Polyamide-Based Textiles. In Woodhead Publishing Series in Textiles; Woodhead Publishing: Cambridge, UK, 2008; pp. 325–353. [Google Scholar]
- Deopura, B.L.; Padaki, N.V. Synthetic Textile Fibers: Polyamide, Polyester and Aramid Fibers. In Woodhead Publishing Series in Textiles; Woodhead Publishing: Cambridge, UK, 2015; pp. 97–114. [Google Scholar]
- Perepelkin, K.E. Physicochemical Nature and Structural Dependence of the Unique Properties of Polyester Fibers. Fiber Chem. 2001, 33, 340–352. [Google Scholar] [CrossRef]
- Timma, L.M.; Lewald, L.; Gier, F.; Homey, L.; Neyer, C.; Gutmann, S. Nonfouling Textiles with Tunable Antimicrobial Activity Based on a Zwitterionic Polyamine Finish. RSC Adv. 2019, 9, 9783–9791. [Google Scholar] [CrossRef]
- Noel, S.; Liberelle, B.; Robitaille, L.; De Crescenzo, G. Quantification of Primary Amine Groups Available for Subsequent Biofunctionalization of Polymer Surfaces. Bioconjug. Chem. 2011, 22, 1690–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer-Gall, T.; Opwis, K.; Gutmann, J.S. Polyvinylamine Modified Polyester Fibers—Innovative Textiles for the Removal of Chromate from Contaminated Groundwater. J. Mater. Chem. A 2014, 3, 386–394. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Yehia, F.Z.; Eshaq, G.; Rabie, A.M.; ElMetwally, A.E. Greener routes for Recycling of Polyethylene Terephthalate. Egypt. J. Pet. 2016, 25, 53–64. [Google Scholar] [CrossRef]
- Noel, S.; Liberelle, B.; Yogi, A.; Moreno, M.J.; Bureau, M.N.; Robitaille, L.; De Crescenzo, G. A Non-Damaging Chemical Amination Protocol for Poly(ethylene terephthalate)-Application to the Design of Functionalized Compliant Vascular Grafts. J. Mater. Chem. B 2013, 1, 230–238. [Google Scholar] [CrossRef]
- More, A.P.; Kokate, S.R.; Rane, P.C.; Mhaske, S.T. Studies of Different Techniques of Aminolysis of Poly(ethylene terephthalate) with Ethylenediamine. Polym. Bull. 2017, 74, 3269–3282. [Google Scholar] [CrossRef]
- Lepoittevin, B.; Costa, L.; Pardoue, S.; Dragoé, D.; Mazerat, S.; Roger, P. Hydrophilic PET Surfaces by Aminolysis and Glycopolymer Brushes Chemistry. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 2689–2697. [Google Scholar] [CrossRef]
- Hoang, C.N.; Dang, Y.H. Aminolysis of Poly(ethylene terephthalate) Waste with Ethylenediamine and Characterization of a,u-Diamine Products. Polym. Degrad. Stab. 2013, 98, 697–708. [Google Scholar] [CrossRef]
- Zhou, J.; Li, M.; Zhong, L.; Zhang, F.; Zhang, G. Aminolysis of Polyethylene Terephthalate Fabric by a Method Involving the Gradual Concentration of Dilute Ethylenediamine. Colloids Surf. A Physicochem. Eng. Asp. 2017, 513, 146–152. [Google Scholar] [CrossRef]
- Ferreira, N.N.; Ferreira, L.M.B.; Cardoso, V.M.O.; Boni, F.I.; Souza, A.L.R.; Gremião, M.P.D. Recent Advances in Smart Hydrogels for Biomedical Applications: From Self-Assembly to Functional Approaches. Eur. Polym. J. 2018, 99, 117–133. [Google Scholar] [CrossRef]
- Chen, K.S.; Tsai, J.C.; Chou, C.W.; Yang, M.R.; Yang, J.M. Effects of Additives on the Photo-Induced Grafting Polymerization of N-Isopropylacrylamide gel onto PET Film and PP Nonwoven Fabric Surface. Mater. Sci. Eng. C 2002, 20, 203–208. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Schlenoff, J.B. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir 2014, 30, 9625–9636. [Google Scholar] [CrossRef]
- Azzaroni, O.; Brown, A.A.; Huck, W.T.S. UCST Wetting Transitions of Polyzwitterionic Brushes Driven by Self-Association. Angew. Chem. Int. Ed. 2006, 45, 1770–1774. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, J.; Yuan, J. Design of Hemocompatible and Antifouling PET Sheets with Synergistic Zwitterionic Surfaces. J. Colloid Interface Sci. 2016, 480, 205–217. [Google Scholar] [CrossRef]
- Suradi, S.S.; Naemuddin, N.H.; Hashim, S.; Adrus, N. Impact of Carboxylation and Hydrolysis Functionalisations on the Anti-Oil Staining Behaviour of Textiles Grafted with Poly(N-isopropylacrylamide) Hydrogel. RSC Adv. 2018, 8, 13423–13432. [Google Scholar] [CrossRef]
- Pelton, R. Poly(N-isopropylacrylamide) (PNIPAM) is Never Hydrophobic. J. Colloid Interface Sci. 2010, 348, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Schild, H.G. Poly(N-isopropylacrylamide): Experiment, Theory and Application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- Schulz, D.N.; Peiffer, D.G.; Agarwal, P.K.; Larabee, J.; Kaladas, J.J.; Soni, L.; Handwerker, B.; Garner, R.T. Phase Behaviour and Solution Properties of Sulphobetaine Polymers. Polymer 1986, 27, 1734–1742. [Google Scholar] [CrossRef]
- Vasantha, V.A.; Jana, S.; Parthiban, A.; Vancso, J.G. Water Swelling, Brine Soluble Imidazole Based Zwitterionic Polymers-Synthesis and Study of Reversible UCST Behaviour and Gel–Sol Transitions. Chem. Commun. 2014, 50, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Kanti, F.; Gulotta, A.; Murray, B.S.; Zhang, S. Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles. Langmuir 2017, 33, 14699–14708. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorusso, E.; Ali, W.; Hildebrandt, M.; Mayer-Gall, T.; Gutmann, J.S. Hydrogel Functionalized Polyester Fabrics by UV-Induced Photopolymerization. Polymers 2019, 11, 1329. https://doi.org/10.3390/polym11081329
Lorusso E, Ali W, Hildebrandt M, Mayer-Gall T, Gutmann JS. Hydrogel Functionalized Polyester Fabrics by UV-Induced Photopolymerization. Polymers. 2019; 11(8):1329. https://doi.org/10.3390/polym11081329
Chicago/Turabian StyleLorusso, Emanuela, Wael Ali, Marcus Hildebrandt, Thomas Mayer-Gall, and Jochen S. Gutmann. 2019. "Hydrogel Functionalized Polyester Fabrics by UV-Induced Photopolymerization" Polymers 11, no. 8: 1329. https://doi.org/10.3390/polym11081329
APA StyleLorusso, E., Ali, W., Hildebrandt, M., Mayer-Gall, T., & Gutmann, J. S. (2019). Hydrogel Functionalized Polyester Fabrics by UV-Induced Photopolymerization. Polymers, 11(8), 1329. https://doi.org/10.3390/polym11081329