Preparation and Comparison of Properties of Three Phase Change Energy Storage Materials with Hollow Fiber Membrane as the Supporting Carrier
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Equipment
2.1.1. Materials
2.1.2. Equipment
2.2. Preparation of Hollow Fiber Membrane
2.3. Preparation of Phase Change Energy Storage Materials
2.4. Characterization
2.4.1. Morphology of the Membranes Surfaces
2.4.2. Porosity and Pore Size Distribution
2.4.3. Percentage Content of Paraffin
2.4.4. Chemical Compatibility
2.4.5. Latent Heats and Cycle Reliability
2.4.6. Thermal Stability and Activation Energy
3. Results and Discussion
3.1. Morphology of the Virgin Membranes
3.2. Porosity and Pore Size Distribution of the Virgin Membranes
3.3. Encapsulation Effect of the Membranes
3.4. Encapsulation Content of Paraffin
3.5. Chemical Compatibility of Paraffin and Membranes
3.6. Latent Heats and Cyclic Reliability of Encapsulation Membranes
3.7. Thermal Stability and Activation Energy of Encapsulation Membranes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saaria, A.; Saidur, R.; Sulaiman, F.A.; Xu, Y.; Dong, J. A review on supercooling of phase change material in thermal energy storge systems. Renew. Sustain. Energy Rev. 2017, 70, 905. [Google Scholar]
- Dincer, I.; Dost, S.; Li, X.G. Thermal energy storage application from an energy saving perspective. Int. J. Glob. Energy Issues 1997, 9, 351–364. [Google Scholar]
- Wang, P.; Jiang, L.; Zhang, B.Y.; Fang, D. Research progress of phase change energy storage materials. Chem. Eng. Equip. 2010, 27, 155–157. [Google Scholar]
- Khan, Z.; Ghafoor, A. A review of performance enhancement of PCM based latent heat Storage system within the context of materials, thermal stability and compatibility. Energy Convers. Manag. 2016, 115, 132. [Google Scholar] [CrossRef]
- Meng, Z.N.; Zhang, P. Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM. Appl. Energy 2017, 190, 524. [Google Scholar] [CrossRef]
- Ling, T.C.; Poon, C.S. Use of phase change materials for thermal energy storage in concrete: An overview. Constr. Build. Mater. 2013, 46, 55. [Google Scholar] [CrossRef]
- Dincer, I. Thermal energy storage systems as a key technology in energy con-servation. Int. J. Energy Res. 2002, 26, 567–588. [Google Scholar] [CrossRef]
- Sharma, S.D.; Sagara, K. Latent heat storage materials and systems: A review. Int. J. Green Energy 2005, 2, 1–56. [Google Scholar] [CrossRef]
- Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. A review on phase changeenergy storage: Materials and applications. Energy Convers. Manag. 2004, 45, 1597–1615. [Google Scholar] [CrossRef]
- Miró, L.; Gasia, J.; Cabeza, L.F. Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Appl. Energy 2016, 179, 284. [Google Scholar] [CrossRef]
- Wahid, M.A.; Hosseini, S.E.; Hussen, H.M.; Akeiber, H.J.; Saud, S.N.; Mohammad, A.T. An overview of phase change materials for construction architecture thermal management in hot and dry climate region. Appl. Therm. Eng. 2017, 112, 1240. [Google Scholar] [CrossRef]
- Anuar Sharif, M.K.; AL-Abidi, A.A.; Mat, S.; Sopian, K.; Ruslan, M.H.; Sulaiman, M.Y.; Rosli, M.A.M. Review of the application of phase change material for heating and domestic hot water systems. Renew. Sustain. Energy Rev. 2015, 42, 557. [Google Scholar] [CrossRef]
- Boh, B.; Knez, E.; Starasenic, M. Microencapsulation of higher hydrocarbonphase change materials by in situ polymerization. J. Microencapsul. 2005, 22, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Alkan, C.; Sari, A.; Karaipekli, A.; Uzun, O. Preparation, characterization and ther-mal properties of microencapsulated phase change material for thermal energystorage. Sol. E Nergy Mater. Sol. Cells 2009, 93, 143–152. [Google Scholar] [CrossRef]
- Hawlader, M.N.A.; Uddin, M.S.; Khin, M.M. Microencapsulated PCM thermal-energy storage system. Appl. Energy 2003, 74, 195–202. [Google Scholar] [CrossRef]
- Acem, Z.; Lopez, J.; Barrio, E.P.D. KNO3/NaNO3–graphite materials for thermalenergy storage at high temperature. Part, I. Elaboration methods and thermalproperties. Appl. Therm. Eng. 2010, 30, 1580–1585. [Google Scholar] [CrossRef]
- Py, X.; Olives, R.; Mauran, S. Paraffin/porous–graphite–matix composite as a highconstant power thermal storage material. Int. J. Heat Mass Transfer. 2001, 44, 2727–2737. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, S.; Wang, X.; Wu, D. Fabrication of microencapsulated phasechange materials based on n-octadecane core and silica shell through inter-facial polycondensation, Colloid Surf. A: Physicochem. Eng. Aspects. 2011, 389, 104–117. [Google Scholar] [CrossRef]
- Sanchez-Silva, L.; Tsavalas, J.; Sundberg, D.; Sanchez, P. Synthesis and character-ization of paraffin wax microcapsules with acrylic-based polymer shells. Ind. Eng. Chem. Res. 2010, 49, 12204–12211. [Google Scholar] [CrossRef]
- Ye, H.; Ge, X. Preparation of polyethylene–paraffin compound as a form-stablesolid–liquid phase change material. Sol. Energy Mater. Sol. Cells 2000, 64, 37–44. [Google Scholar]
- Duarte-Silva, R.; Villa-Garcı′a, M.A.; Rendueles, M.; Dı′az, M. Structural, textural and protein adsorption properties of kaolinite and surface modified kaolinite adsorbents. Appl. Clay Sci. 2014, 90, 73–80. [Google Scholar] [CrossRef]
- Arteconi, A.; Hewitt, N.J.; Polonara, F. State of the art of thermal storage for demand side management. Appl. Energy 2012, 93, 371–389. [Google Scholar] [CrossRef]
- Guan, W.M.; Li, J.H.; Qian, T.T.; Wang, X.; Deng, Y. Preparation of paraffin/expanded vermiculite with enhanced thermal conductivity by implanting network carbon in vermiculite layers. Chem. Eng. J. 2015, 277, 56–63. [Google Scholar] [CrossRef]
- Li, M.; Guo, Q.G.; Nutt, S. Carbon nanotube/paraffin/ montmorillonite composite phase change material for thermal energy storage. Sol Energy 2017, 146, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Konuklua, Y.; Ersoy, O. Fabrication and characterization of form-stable phase change material/xonotlite microcomposites. Sol Energy Mater Sol Cells 2017, 168, 130–135. [Google Scholar] [CrossRef]
- Tang, B.T.; Wei, H.P.; Zhao, D.F.; Zhang, S.F. Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping. Sol Energy Mater Sol Cells 2017, 161, 183–189. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, Q.H.; Wang, S.S.; Zhang, J.; Wang, S.H.; Wang, Z.Y.; Zhang, Z.P. Preparation, characterization, and thermal properties of microencapsulated phase change materials. Sol. Energy Mater Sol Cells 2012, 98, 66–70. [Google Scholar] [CrossRef]
- Mesalhy, O.; Lafdi, K.; Elgafy, A. Carbon foam matrices saturated with PCM for thermal protection purposes. Carbon 2006, 44, 2080–2088. [Google Scholar] [CrossRef]
- Mondal, S. Phase change materials for smart textiles—An overview. Appl. Therm. Eng. 2008, 28, 1536–1550. [Google Scholar] [CrossRef]
- Tang, B.T.; Wang, L.J.; Xu, Y.J.; Xiu, J.H.; Zhang, S.F. Hexadecanol/phase change polyurethane composite as formstable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2016, 144, 1–6. [Google Scholar] [CrossRef]
- Umair, M.M.; Zhang, Y.; Iqbal, K. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review. Appl. Energy 2019, 235, 846–873. [Google Scholar] [CrossRef]
- Xu, B.W.; Ma, H.Y.; Lu, Z.Y.; Li, Z.J. Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites. Appl. Energy 2015, 160, 358–367. [Google Scholar] [CrossRef]
- Chung, O.; Jeong, S.G.; Kim, S. Preparation of energy efficient paraffinic PCM/expanded vermiculite and perlite composites for energy saving in buildings. Sol. Energy Mater. Sol. Cells 2015, 137, 107–112. [Google Scholar] [CrossRef]
- Sarı, A.; Karaipekli, A. Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Mater. Chem. Phys. 2008, 109, 459–464. [Google Scholar] [CrossRef]
- Qian, T.T.; Li, J.H.; Min, X.; Deng, Y.; Guan, W.M.; Ning, L. Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material. Energy Convers. Manag. 2015, 98, 34–45. [Google Scholar] [CrossRef]
- Xu, B.W.; Li, Z.J. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl. Energy. 2013, 105, 229–237. [Google Scholar] [CrossRef]
- Li, B.X.; Liu, T.X.; Hu, L.Y.; Wang, Y.F.; Nie, S.B. Facile preparation and adjustable thermal property of stearic acid–graphene oxide composite as shapestabilized phase change material. Chem. Eng. J. 2013, 215–216, 819–826. [Google Scholar] [CrossRef]
- Ling, Z.Y.; Chen, J.J.; Xu, T.; Fang, X.M.; Gao, X.N.; Zhang, Z.G. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Convers. Manag. 2015, 102, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Fang, G.; Li, H.; Chen, Z.; Li, X. Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials. Energy 2010, 35, 4622–4626. [Google Scholar] [CrossRef]
- Saffar, A.; Carreau, P.J.; Ajji, A.; Kamal, M.R. Development of polypropylene microporous hydrophilic membranes by blending with PP-g-MA and PP-g-AA. J. Membr. Sci. 2014, 462, 50–61. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Chen, C. Method of hollow fiber membrane porosity determination. In Proceedings of the 1st Chinese National Chemical and Biochemical Engineering Annual Meeting, Nanjing, China, 5 November 2004. [Google Scholar]
- Moreno, R.M.B.; de Medeiros, E.S.; Ferreira, F.C.; Alves, N.; Gonçalves, P.S.; Mattoso, L.H.C. Thermogravimetric studies of decomposition kinetics of six different IACHevearubber clones using Flynn–Wall–Ozawa approach. Plast. Rubber Compos. 2006, 35, 15–21. [Google Scholar] [CrossRef]
- Xiang, L.; Yang, J.; Luo, D.; Su, X.; Qin, S. Construction of efficient desalting layer on a cellulose acetate membrane by acetalized surface crosslinking treatment. Polym. Eng. Sci. 2018, 59, 913–918. [Google Scholar] [CrossRef]
- Xin, S.; Bai, X.; Yaozhu, T.; Shuhao, Q.; Lan, X. 3D Porous Poly(L-lactic Acid) Materials with Controllable Multi-scale Microstructures and Their Potential Application in Oil-Water Separation. Appl. Surf. Sci. 2018, 462, 633–640. [Google Scholar]
- Zhang, Q.; He, Z.B.; Fang, X.M.; Zhang, X.W.; Zhang, Z.G. Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask. Energy Storage Mater. 2017, 6, 36–45. [Google Scholar] [CrossRef]
- Li, B.; Liu, T.; Hu, L.; Wang, Y.; Gao, L. Fabrication and properties of microencapsulated paraffin/SiO2 phase change composite for thermal energy storage. ACS Sustain. Chem. Eng. 2013, 1, 374–380. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.H.; Qian, T.T.; Guan, W.M.; Li, Y.L.; Yin, X.P. Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage. Chem. Eng. J. 2016, 295, 427–435. [Google Scholar] [CrossRef]
- Deng, Y.; He, M.; Li, J.; Yang, Z. Polyethylene Glycol-Carbon Nanotubes/Expanded Vermiculite Form-Stable Composite Phase Change Materials: Simultaneously Enhanced Latent Heat and Heat Transfer. Polymers 2018, 10, 889. [Google Scholar] [CrossRef]
- Mehrali, M.; Latibari, S.T.; Mehrali, M.; Metselaar, H.S.C.; Silakhori, M. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers. Manag. 2013, 67, 275–282. [Google Scholar] [CrossRef]
- Luo, D.; Wei, F.; Shao, H.; Xiang, L.; Yang, J.; Cui, Z.; Qin, S.; Yu, J. Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials. J. Mater. Sci. 2018, 53, 15500–15513. [Google Scholar] [CrossRef]
Category | Model | Use Condition or Characteristic | Suppliers |
---|---|---|---|
Twin-screw extruder | SHJ-20 | Length-diameter ratios: 40 | Nanjing Jieya Extrusion Equipment Co., Ltd., Nanjing, China. |
Weight-scale | AE4202 | Accuracy: 0.01 g | Shanghai Sunny Hengping Co., Ltd., Shanghai, China. |
Vacuum drying oven | DZF6050 | Accuracy: 0.1 °C | Shaoxing Supo Instrument Co., Ltd., Shaoxing, China. |
Ultrasonic equipment | JP-360ST | Frequency: 28–40 KHZ Heating temperature: 0–200 °C | Shenzhen Jiemeng Cleaning Equipment Co., Ltd., Shenzhen, China. |
Samples | Melting Process | Solidifying Process | ||||
---|---|---|---|---|---|---|
TM (°C) | HM (J/g) | HC1 (J/g) | TS (°C) | HS (J/g) | HC2 (J/g) | |
Paraffin | 54.10 ± 0.27 | 138.20 ± 2.12 | 138.20 | 48.70 ± 0.20 | 145.60 ± 2.43 | 145.60 |
PVDF EM | 57.03 ± 0.31 | 102.20 ± 1.51 | 103.08 | 50.52 ± 0.31 | 107.20 ± 1.39 | 108.60 |
PP EM | 57.66 ± 0.33 | 109.80 ± 1.87 | 111.64 | 51.67 ± 0.54 | 113.90 ± 2.17 | 117.62 |
PSF EM | 57.02 ± 0.29 | 97.30 ± 1.38 | 99.98 | 49.91 ± 0.37 | 104.40 ± 1.73 | 105.34 |
Samples | Melting Process | Solidifying Process | ||||
---|---|---|---|---|---|---|
H1 (J/g) | H100 (J/g) | RL1 (%) | H1 (J/g) | H100 (J/g) | RL2 (%) | |
PVDF EM | 103.53 | 102.19 | 98.71 | 106.37 | 105.57 | 99.24 |
PP EM | 108.07 | 106.95 | 98.96 | 111.61 | 110.86 | 99.33 |
PSF EM | 99.29 | 98.34 | 99.04 | 102.42 | 101.17 | 98.78 |
Samples | The First Step | The Second Step | Weight Loss (%) | ||
---|---|---|---|---|---|
T−5% (°C) | Tmax (°C) | T−5% (°C) | Tmax (°C) | ||
Paraffin | 248.27 | 317.27 | -- | -- | 99.98 |
PVDF EM | 263.87 | 329.52 | 492.54 | 503.79 | 91.64 |
PP EM | 268.06 | 340.10 | 450.65 | 475.41 | 99.98 |
PSF EM | 256.39 | 325.84 | 479.22 | 490.52 | 91.46 |
Conversion α (%) | Activation Energy E (kJ/mol) | ||
---|---|---|---|
PVDF EM | PP EM | PSF EM | |
5 | 91.22 | 93.56 | 86.23 |
10 | 92.56 | 95.90 | 88.93 |
15 | 93.31 | 97.01 | 89.82 |
20 | 93.84 | 97.49 | 90.21 |
30 | 94.68 | 98.19 | 90.77 |
40 | 95.27 | 98.81 | 91.29 |
50 | 96.02 | 99.30 | 91.67 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, L.; Luo, D.; Yang, J.; Sun, X.; Qi, Y.; Qin, S. Preparation and Comparison of Properties of Three Phase Change Energy Storage Materials with Hollow Fiber Membrane as the Supporting Carrier. Polymers 2019, 11, 1343. https://doi.org/10.3390/polym11081343
Xiang L, Luo D, Yang J, Sun X, Qi Y, Qin S. Preparation and Comparison of Properties of Three Phase Change Energy Storage Materials with Hollow Fiber Membrane as the Supporting Carrier. Polymers. 2019; 11(8):1343. https://doi.org/10.3390/polym11081343
Chicago/Turabian StyleXiang, Li, Dajun Luo, Jingkui Yang, Xin Sun, Yating Qi, and Shuhao Qin. 2019. "Preparation and Comparison of Properties of Three Phase Change Energy Storage Materials with Hollow Fiber Membrane as the Supporting Carrier" Polymers 11, no. 8: 1343. https://doi.org/10.3390/polym11081343
APA StyleXiang, L., Luo, D., Yang, J., Sun, X., Qi, Y., & Qin, S. (2019). Preparation and Comparison of Properties of Three Phase Change Energy Storage Materials with Hollow Fiber Membrane as the Supporting Carrier. Polymers, 11(8), 1343. https://doi.org/10.3390/polym11081343