EMG Measurement with Textile-Based Electrodes in Different Electrode Sizes and Clothing Pressures for Smart Clothing Design Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrode Preparation
2.2. EMG Measurement and Data Processing
2.3. Experimental Protocol
2.4. Clothing Pressure
2.5. Data Analysis and Statistics
3. Results
3.1. Effect of the Electrode Diameter
3.2. Effect of the Clothing Pressure
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DC | Distal circumference |
DL | Distal length |
ECG | Electrocardiography |
EMG | Electromyography |
EOG | Electrooculography |
IED | Inter-electrode distance |
PC | Proximal circumference |
Pc | Clothing pressure |
PL | Proximal length |
PSD | Power spectral density |
PRR | Pattern reduction rate |
RMS | Root mean square |
SEMG | Surface electromyography |
SNR | Signal to noise ratio |
TPU | Thermoplastic polyurethane |
References
- Cram, J.R.; Steger, J.C. EMG Scanning in the diagnosis of chronic pain. Biofeedback Self Regul. 1983, 8, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Kleissen, R.F.M.; Buurke, J.H.; Harlaar, J.; Zilvold, G. Electromyography in the biomechanical analysis of human movement and its clinical application. Gait Posture 1998, 8, 143–158. [Google Scholar] [CrossRef]
- Subbu, R.; Weiler, R.; Whyte, G. The practical use of surface electromyography during running: Does the evidence support the hype? A narrative review. BMJ Open Sport Exerc. Med. 2015, 1, 1–3. [Google Scholar] [CrossRef]
- Luttmann, A.; Jäger, M.; Laurig, W. Electromyographical indication of muscular fatigue in occupational field studies. Int. J. Ind. Ergon. 2000, 25, 646–660. [Google Scholar] [CrossRef]
- Siyeon, K.; Jeong, W. Physiological and psychological neck load imposed by ballistic helmets during simulated military activities. Fash. Text. 2020, 7, 1–13. [Google Scholar]
- Giminiani, R.D.; Cardinale, M.; Ferrari, M.; Quaresima, V. Validation of fabric-based thigh-wearable EMG sensors and oximetry for monitoring quadriceps activity during strength and endurance exercises. Sensors 2020, 20, 4664. [Google Scholar] [CrossRef]
- Sayem, A.S.M.; Teay, S.H.; Shahariar, H.; Fink, P.L.; Albarbar, A. Review on smart electro-clothing systems (SeCSs). Sensors 2020, 20, 587. [Google Scholar] [CrossRef] [Green Version]
- Bengs, D.; Jeglinsky, I.; Surakka, J.; Hellsten, T.; Ring, J.; Kettunen, J. Reliability of measuring lower-limb-muscle electromyography activity ratio in activities of daily living with electrodes embedded in the clothing. J. Sport Rehabil. 2017, 26, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Lynn, S.K.; Watkins, C.M.; Wong, M.A.; Balfany, K.; Feeney, D.F. Validity and reliability of surface electromyography measurements from a wearable athlete performance system. J. Sports Sci. Med. 2018, 17, 205–215. [Google Scholar]
- Aquino, J.; Roper, J. Intraindividual variability and validity in smart apparel muscle activity measurements during exercise in men. Int. J. Exerc. Sci. 2018, 11, 516–525. [Google Scholar]
- Ju, N.; Lee, K.-H. Consumer resistance to innovation: Smart clothing. Fash. Text. 2020, 7, 1–19. [Google Scholar] [CrossRef]
- Fernándex-Caramés, T.M.; Fraga-Lamas, P. Towards the internet-of-smart-clothing: A review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics 2018, 7, 405. [Google Scholar] [CrossRef] [Green Version]
- Dunne, L. Smart clothing in practice: Key design barriers to commercialization. Fash. Pract. 2010, 2, 41–65. [Google Scholar] [CrossRef]
- Acar, G.; Ozturk, O.; Golparvar, A.J.; Elboshra, T.A.; Bohringer, K.; Yapici, M.K. Wearable and flexible textile electrodes for biopotential signal monitoring: A review. Electronics 2020, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Finni, T.; Hu, M.; Kettunen, P.; Vilavno, T.; Cheng, S. Measurement of EMG activity with textile electrodes embedded into clothing. Physiol. Meas. 2020, 28, 1405–1419. [Google Scholar] [CrossRef]
- Rodrigues, M.S.; Fiedler, P.; Küchler, N.; Domingues, R.P.; Lopes, C.; Borges, J.; Haueisen, J.; Vaz, F. Dry electrodes for surface electromyography based on architecture titanium thin films. Materials 2020, 13, 2135. [Google Scholar] [CrossRef]
- Dabby, N.; Aleksov, A.; Lewallen, E.; Oster, S.; Fygenson, R.; Lathrop, B.; Bynum, M.; Samady, M.; Klein, S.; Girouard, S. A scalable process for manufacturing integrated, washable smart garments applied to heart rate monitoring. In Proceedings of the 2017 ACM International Symposium on Wearable Computers (ISWC ’17), Maui, HI, USA, 11–15 September 2017. [Google Scholar]
- Puurtinen, M.M.; Komulainen, S.M.; Kauppinen, P.K.; Malmivuo, J.A.V. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006. [Google Scholar]
- An, X.; Tangsirinaruenart, O.; Stylios, G.K. Investigating the performance of dry textile electrodes for wearable end-uses. J. Text. Inst. 2019, 110, 151–158. [Google Scholar] [CrossRef]
- Merletti, R.; Hermens, H.J. Detection and conditioning of the surface EMG signal. In Electromyography—Physiology, Engineering, and Noninvasive Applications, 1st ed.; Merletti, R., Parker, P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 107–131. [Google Scholar]
- Marozas, V.; Petrenas, A.; Daukantas, S.; Lukosevicius, A. A comparison of conductive textile-based and silver/silver chloride gel electrodes in exercise electrocardiogram recordings. J. Electromyogr. 2011, 44, 189–194. [Google Scholar]
- Li, G.; Wang, S.; Duan, Y.Y. Towards gel-free electrodes: A systematic study of electrode-skin impedance. Sens. Actuator B Chem. 2017, 241, 1244–1255. [Google Scholar] [CrossRef]
- Mesin, L. Crosstalk in surface electromyogram: Literature review and some insights. Phys. Eng. Sci. Med. 2020, 43, 481–492. [Google Scholar] [CrossRef]
- Wong, A.S.W.; Li, Y.; Zhang, X. Influence of fabric mechanical property on clothing dynamic pressure distribution and pressure comfort on tight-fit sportswear. Sen’i Gakkaishi 2004, 60, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.Y.; Lee, H. Influence of clothing pressure on blood flow and subjective sensibility of commercial sports compression wear. Fash. Text. Res. J. 2019, 21, 459–467. (In Korean) [Google Scholar] [CrossRef]
- Zhang, X.; Yeung, K.W.; Li, Y. Numerical simulation of 3D dynamic garment pressure. Text. Res. J. 2002, 72, 245–252. [Google Scholar] [CrossRef]
- Standards for Surface Electromyography: The European Project “Surface EMG for Non-Invasive Assessment of Muscles (SENIAM)”. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.623.2040&rep=rep1&type=pdf (accessed on 9 September 2020).
- De Silva, J.C.L.; Tarassova, O.; Ekbolom, M.M.; Andersson, E.; Rönquist, G.; Arndt, A. Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography. Eur. J. Appl. Physiol. 2016, 116, 1807–1817. [Google Scholar] [CrossRef] [Green Version]
- Pani, D.; Achilli, A.; Spanu, A.; Bonfiglio, A.; Gazzoni, M.; Botter, A. Validation of polymer-based screen-printed textile electrodes for surface EMG detection. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Cömert, A.; Honkala, M.; Hyttinen, J. Effect of pressure and padding on motion artifact of textile electrodes. Biomed. Eng. Online 2013, 12, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Wang, C.; Zhao, R.; Du, L.; Fang, Z.; Guo, X.; Zhao, Z. Review of stratum corneum impedance measurement in non-invasive penetration application. Biosensors 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, S.; Jeong, W. EMG Measurement with Textile-Based Electrodes in Different Electrode Sizes and Clothing Pressures for Smart Clothing Design Optimization. Polymers 2020, 12, 2406. https://doi.org/10.3390/polym12102406
Kim S, Lee S, Jeong W. EMG Measurement with Textile-Based Electrodes in Different Electrode Sizes and Clothing Pressures for Smart Clothing Design Optimization. Polymers. 2020; 12(10):2406. https://doi.org/10.3390/polym12102406
Chicago/Turabian StyleKim, Siyeon, Sojung Lee, and Wonyoung Jeong. 2020. "EMG Measurement with Textile-Based Electrodes in Different Electrode Sizes and Clothing Pressures for Smart Clothing Design Optimization" Polymers 12, no. 10: 2406. https://doi.org/10.3390/polym12102406
APA StyleKim, S., Lee, S., & Jeong, W. (2020). EMG Measurement with Textile-Based Electrodes in Different Electrode Sizes and Clothing Pressures for Smart Clothing Design Optimization. Polymers, 12(10), 2406. https://doi.org/10.3390/polym12102406