Effect of the Degree of Substitution on the Hydrophobicity, Crystallinity, and Thermal Properties of Lauroylated Amaranth Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Chemical Reagents
2.2. Extraction of Amaranth Starch
2.3. Lauroylation of Amaranth Starch
2.4. Degree of Substitution
2.5. X-ray Photoelectron Spectroscopy (XPS)
2.6. GAB Parameters
2.7. X-ray Diffraction
2.8. Thermal Properties of Starches
2.9. Statistical Analysis
3. Results
3.1. Degree of Substitution and Surface Characterization
3.2. Adsorption Isotherm Studies
3.3. Relative Crystallinity
3.4. Thermal Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DS | Degree of Substitution |
GRAS | Generally Recognized As Safe |
GAB | Guggenheim–Anderson de Boer model |
XPS | X-ray Photoelectron Spectroscopy |
XRD | X-ray Diffraction |
DSC | Differential Scanning Calorimetry |
AGU | Anhydrous Glucose Unit |
AS | Amaranth Starch |
ASL | Amaranth Starch Laurate |
NMR | Nuclear Magnetic Resonance |
References
- Alemayehu, F.R.; Bendevis, M.A.; Jacobsen, S.E. The potential for utilizing the seed crop amaranth (Amaranthus spp.) in east africa as an alternative crop to support food security and climate change mitigation. J. Agron. Crop. Sci. 2015, 201, 321–329. [Google Scholar] [CrossRef]
- Assad, R.; Reshi, Z.A.; Jan, S.; Rashid, I. Biology of amaranths. Bot. Rev. 2017, 83, 382–436. [Google Scholar] [CrossRef]
- Zhu, F. Structures, physicochemical properties, and applications of amaranth starch. Crit. Rev. Food Sci. Nutr. 2017, 57, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Venskutonis, P.R.; Paulius, K. Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Compr. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar] [CrossRef]
- Gamel, T.H.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A.; Linssen, J.P. Characterization of amaranth seed oils. J. Food Lipids 2007, 14, 323–334. [Google Scholar] [CrossRef]
- Amare, E.; Mouquet-Rivier, C.; Servent, A.; Morel, G.; Adish, A.; Haki, G.D. Protein quality of amaranth grains cultivated in ethiopia as affected by popping and fermentation. Food Nutr. Sci. 2015, 06, 11. [Google Scholar] [CrossRef] [Green Version]
- Dinssa, F.F.; Yang, R.Y.; Ledesma, D.R.; Mbwambo, O.; Hanson, P. Effect of leaf harvest on grain yield and nutrient content of diverse amaranth entries. Sci. Hortic. 2018, 236, 146–157. [Google Scholar] [CrossRef]
- Cárdenas-Hernández, A.; Beta, T.; Tostado, E.C.; Nieto-Barrera, J.O.; Mendoza, S. Improved functional properties of pasta: Enrichment with amaranth seed flour and dried amaranth leaves. J. Cereal Sci. 2016, 72, 84–90. [Google Scholar] [CrossRef]
- Inglett, G.E.; Chen, D.; Liu, S.X. Physical properties of gluten-free sugar cookies made from amaranth oat composites. LWT—Food Sci. Technol. 2015, 63, 214–220. [Google Scholar] [CrossRef]
- Tamsen, M.; Shekarchizadeh, H.; Soltanizadeh, N. Evaluation of wheat flour substitution with amaranth flour on chicken nugget properties. LWT—Food Sci. Technol. 2018, 91, 580–587. [Google Scholar] [CrossRef]
- Villarreal, M.E.; Ribotta, P.D.; Iturriaga, L.B. Comparing methods for extracting amaranthus starch and the properties of the isolated starches. LWT—Food Sci. Technol. 2013, 51, 441–447. [Google Scholar] [CrossRef]
- Roa, D.F.; Buera, M.P.; Tolaba, M.P.; Santagapita, P.R. Encapsulation and Stabilization of β-Carotene in Amaranth Matrices Obtained by Dry and Wet Assisted Ball Milling. Food Bioprocess Technol. 2017, 10, 512–521. [Google Scholar] [CrossRef]
- French, D. Chemical and physical properties of starch. J. Anim. Sci. 1973, 37, 1048–1061. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Wang, X.; Wang, Y. High Carbonyl Content Oxidized Starch Prepared by Hydrogen Peroxide and Its Thermoplastic Application. Starch-Stärke 2009, 61, 646–655. [Google Scholar] [CrossRef]
- Kshirsagar, A.C.; Singhal, R.S. Preparation of hydroxypropyl corn and amaranth starch hydrolyzate and its evaluation as wall material in microencapsulation. Food Chem. 2008, 108, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyaya, S.; Singhal, R.S.; Kulkarni, P.R. Oxidised starch as gum arabic substitute for encapsulation of flavours. Carbohydr. Polym. 1998, 37, 143–144. [Google Scholar] [CrossRef]
- Falfán, R.C.N.; Martínez, M.G.; Nigo Verdalet Guzmán, I.; Llano, S.L.A.; Grosso, C.R.F.; Bustos, F.M. Evaluation of modified amaranth starch as shell material for encapsulation of probiotics. Cereal Chem. J. 2014, 91, 300–308. [Google Scholar]
- García-Rodríguez, A.P.; Gaytán-Martínez, M.; Barrera-Cortés, J.; Ibarra, J.E.; Martínez-Bustos, F. Bio-insecticide bacillus thuringiensis spores encapsulated with amaranth derivatized starches: Studies on the propagation in vitro. Bioprocess Biosyst. Eng. 2014, 38, 329–339. [Google Scholar] [CrossRef]
- Winkler, H.; Vorwerg, W.; Wetzel, H. Synthesis and properties of fatty acid starch esters. Carbohydr. Polym. 2013, 98, 208–216. [Google Scholar] [CrossRef]
- Thitisomboon, W.; Opaprakasit, P.; Jaikaew, N.; Boonyarattanakalin, S. Characterizations of modified cassava starch with long chain fatty acid chlorides obtained from esterification under low reaction temperature and its PLA blending. J. Macromol. Sci. 2018, 55, 253–259. [Google Scholar] [CrossRef]
- Namazi, H.; Fathi, F.; Dadkhah, A. Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles. Sci. Iran. 2011, 18, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, M.; McClements, D.J.; Terjung, N.; Chang, Y.; Weiss, J. Antimicrobials, carrageenan, electrostatic complexation, lauric arginate, spoilage yeasts, xanthan. J. Appl. Microbiol. 2014, 117, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Leal-Castaneda, E.; García-Tejeda, Y.; Hernández-Sánchez, H.; Alamilla-Beltrán, L.; Téllez-Medina, D.I.; Calderón-Domínguez, G.; García, H.S.; Gutiérrez-López, G. Pickering emulsions stabilized with native and lauroylated amaranth starch. Food Hydrocoll. 2018, 80, 177–185. [Google Scholar] [CrossRef]
- Timmermann, E.O.; Chirife, J.; Iglesias, H.A. Water sorption isotherms of foods and foodstuffs: Bet or gab parameters? J. Food Eng. 2001, 48, 19–31. [Google Scholar] [CrossRef]
- McCleary, B.V.; Gibson, T.S.; Mugford, D.C. Measurement of total starch in cereal products by amyloglucosidase- α-amylase method: Collaborative study. J. AOAC Int. 1997, 80, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Yaffee, R.A.; McGee, M. Introduction to Time Series Analysis and Forecasting: With Applications of SAS and SPSS, 1st ed.; Academic Press, Inc.: Orlando, FL, USA, 2000. [Google Scholar]
- Farooq, A.M.; Dhital, S.; Li, C.; Zhang, B.; Huang, Q. Effects of palm oil on structural and in vitro digestion properties of cooked rice starches. Int. J. Biol. Macromol. 2018, 107, 1080–1085. [Google Scholar] [CrossRef] [Green Version]
- Ostrowska-Czubenko, J.; Pierg, M.; Gierszewska-Druyska, M. Water state in chemically and physically crosslinked chitosan membranes. J. Appl. Polym. Sci. 2013, 130, 1707–1715. [Google Scholar] [CrossRef]
- Miladinov, V.D.; Hanna, M.A. Modified starch, Starch esters, Reactive extrusion, Acid anhydride, Degree of substitution. Ind. Crop. Prod. 2000, 11, 51–57. [Google Scholar] [CrossRef]
- Abdul Hadi, N.; Wiege, B.; Stabenau, S.; Marefati, A.; Rayner, M. Comparison of Three Methods to Determine the Degree of Substitution of Quinoa and Rice Starch Acetates, Propionates, and Butyrates: Direct Stoichiometry, FTIR, and 1H-NMR. Foods 2020, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Axnanda, S.; Crumlin, E.J.; Mao, B.; Rani, S.; Chang, R.; Karlsson, P.G.; Edwards, M.; Lundqvist, M.; Moberg, R.; Ross, P.; et al. Using tender x-ray ambient pressure x-ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci. Rep. 2015, 5, 9788. [Google Scholar] [CrossRef]
- Shogren, R.L.; Viswanathan, A.; Felker, F.; Gross, R.A. Distribution of octenyl succinate groups in octenyl succinic anhydride modified waxy maize starch. Starch-Stärke 2000, 52, 196–204. [Google Scholar] [CrossRef]
- Zhang, Y.; Gan, T.; Hu, H.; Huang, Z.; Huang, A.; Zhu, Y.; Feng, Z.; Yang, M. A green technology for the preparation of high fatty acid starch esters: Solid-phase synthesis of starch laurate assisted by mechanical activation with stirring ball mill as reactor. Ind. Eng. Chem. Res. 2014, 53, 2114–2120. [Google Scholar] [CrossRef]
- Saad, M.; Gaiani, C.; Mullet, M.; Scher, J.; Cuq, B. X-ray photoelectron spectroscopy for wheat powders: Measurement of surface chemical composition. J. Agric. Food Chem. 2011, 59, 1527–1540. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, P.P. The applicability of the gab model to food water sorption isotherms. Int. J. Food Sci. Technol. 1997, 32, 553–557. [Google Scholar] [CrossRef]
- Koç, B.; Yilmazer, M.S.; Balkr, P.; Ertekin, F.K. Moisture sorption isotherms and storage stability of spray-dried yogurt powder. Dry. Technol. 2010, 28, 816–822. [Google Scholar] [CrossRef]
- Cova, A.; Sandoval, A.J.; Balsamo, V.; Mller, A.J. The effect of hydrophobic modifications on the adsorption isotherms of cassava starch. Carbohydr. Polym. 2010, 81, 660–667. [Google Scholar] [CrossRef]
- Bet, C.D.; de Oliveira, C.S.; Colman, T.A.D.; Marinho, M.T.; Lacerda, L.G.; Ramos, A.P.; Schnitzler, E. Organic amaranth starch: A study of its technological properties after heat-moisture treatment. Food Chem. 2018, 264, 435–442. [Google Scholar] [CrossRef]
- Winkler, H.; Vorwerg, W.; Rihm, R. Thermal and mechanical properties of fatty acid starch esters. Carbohydr. Polym. 2014, 102, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Guo, Z.; Miao, S.; Zeng, S.; Jia, X.; Zhang, Y.; Zheng, B. Preparation and characterization of lotus seed starch-fatty acid complexes formed by microfluidization. J. Food Eng. 2018, 237, 52–59. [Google Scholar] [CrossRef]
- Marinopoulou, A.; Papastergiadis, E.; Raphaelides, S.N. An investigation into the structure, morphology and thermal properties of amylomaize starch-fatty acid complexes prepared at different temperatures. Food Res. Int. 2016, 90, 111–120. [Google Scholar] [CrossRef]
- Kibar, E.A.A.; Ferhunde, U. Effects of fatty acid addition on the physicochemical properties of corn starch. Int. J. Food Prop. 2014, 17, 204–218. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, L.; Yue, X.; Xiong, G.; Wu, W.; Qiao, Y.; Liao, L. Physicochemical properties of lipase-catalyzed laurylation of corn starch. Starch-Stärke 2014, 66, 450–456. [Google Scholar] [CrossRef]
- Srichuwong, S.; Isono, N.; Jiang, H.; Mishima, T.; Hisamatsu, M. Freezethaw stability of starches from different botanical sources: Correlation with structural features. Carbohydr. Polym. 2012, 87, 1275–1279. [Google Scholar] [CrossRef]
- Abiddin, N.F.Z.; Yusoff, A.; Ahmad, N. Effect of octenylsuccinylation on physicochemical, thermal, mor-phological and stability of octenyl succinic anhydride (osa) modified sago starch. Food Hydrocoll. 2018, 75, 138–146. [Google Scholar] [CrossRef]
Sample | DS | O/C | XPS (%) | Molecular Composition | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Na | N | Si | |||||||||
AS | 0 | 0.50 | 0 | 65.5 | 32.7 | 0 | 1.3 | 0.5 | 6.06 | 0 | 23.34 | 1 | 0.5 |
ASL1 | 0.06 | 0.27 | 0.08 | 77.1 | 20.7 | 0.3 | 1.5 | 0.4 | 3.81 | 0.3 | 47.50 | 0.5 | 0.4 |
ASL2 | 0.82 | 0.30 | 0.26 | 73.6 | 22.2 | 0.9 | 1.0 | 2.3 | 3.51 | 0.9 | 33.44 | 0.77 | 2.3 |
ASL3 | 1.16 | 0.30 | 1.01 | 73.1 | 21.8 | 3.3 | 1.0 | 0.8 | 3.25 | 3.3 | 8.71 | 0.77 | 0.8 |
GAB Model | Starches | |||
---|---|---|---|---|
AS | ASL1 | ASL2 | ASL3 | |
C | 30.82 | 24.23 | 63.08 | 40.98 |
K | 0.893 | 0.590 | 0.642 | 0.691 |
(g HO/g of starch) | 7.06 | 8.335 | 6.374 | 4.539 |
P(%) | 8.72 | 25.65 | 14.19 | 14.76 |
0.995 | 0.994 | 0.995 | 0.992 |
Analysis | Samples | |||
---|---|---|---|---|
AS | ASL1 | ASL2 | ASL3 | |
(C) | −7.73 ± 0.46 | −8.112 ± 0.12 | −9.84± 0.08 | −11.18± 0.08 |
(C) | −2.67 ± 0.15 | −2.38 ± 0.58 | −2.69 ± 0.14 | −1.96 ± 0.28 |
(C) | 0.49 ± 0.77 | 0.51 ± 0.36 | 0.28 ± 0.37 | 0.22 ± 0.58 |
137.17 ± 5.46 | 144.09 ± 3.09 | 145.71 ± 2.37 | 155.82 ± 2.94 | |
0.41 ± 0.02 | 0.43 ± 0.01 | 0.44 ± 0.01 | 0.47 ± 0.00 |
Samples | (C) | (C) | (J/g) |
---|---|---|---|
AS | 38.41 ± 0.42 | 40.19 ± 0.52 | 3.11 ± 0.28 |
AS-r7 | 42.75 ± 0.99 | 52.03 ± 1.592 | 1.70 ± 0.34 |
AS-r14 | 42.06 ± 0.63 | 52.44 ± 0.42 | 1.63 ± 0.08 |
AS-r28 | 43.06 ± 0.12 | 53.19 ± 0.49 | 1.54 ± 0.02 |
ASL1 | 38.88 ± 1.06 | 40.18 ± 0.46 | 1.04 ± 0.25 |
ASL1-r7 | 43.74 ± 2.77 | 51.84 ± 0.92 | 1.09 ± 0.24 |
ASL1-r14 | 40.6 ± 0.26 | 51.49 ± 0.38 | 1.06 ± 0.02 |
ASL1-r28 | 39.05 ± 0.42 | 54.21 ± 0.13 | 1.01 ± 0.06 |
ASL2 | 40.23 ± 0.36 | 41.87 ± 0.26 | 14.31 ± 0.19 |
ASL2-r7 | 39.87 ± 0.46 | 40.97 ± 0.59 | 13.50 ± 0.27 |
ASL2-r14 | 39.78 ± 0.47 | 41.29 ± 0.28 | 12.97 ± 0.09 |
ASL2-r28 | 39.43 ± 0.56 | 40.84 ± 0.51 | 12.99 ± 0.03 |
ASL3 | 40.99 ± 0.21 | 42.13 ± 0.45 | 23.67 ± 1.74 |
ASL3-r7 | 40.53 ± 0.16 | 42.176 ± 0.32 | 21.45 ± 1.16 |
ASL3-r14 | 40.26 ± 0.22 | 42.003 ± 0.04 | 21.82 ± 0.92 |
ASL3-r28 | 40.61 ± 0.32 | 42.18 ± 0.13 | 22.55 ± 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Solis, V.; García-Tejeda, Y.V.; Leal-Castañeda, E.J.; Barrera-Figueroa, V. Effect of the Degree of Substitution on the Hydrophobicity, Crystallinity, and Thermal Properties of Lauroylated Amaranth Starch. Polymers 2020, 12, 2548. https://doi.org/10.3390/polym12112548
Espinosa-Solis V, García-Tejeda YV, Leal-Castañeda EJ, Barrera-Figueroa V. Effect of the Degree of Substitution on the Hydrophobicity, Crystallinity, and Thermal Properties of Lauroylated Amaranth Starch. Polymers. 2020; 12(11):2548. https://doi.org/10.3390/polym12112548
Chicago/Turabian StyleEspinosa-Solis, Vicente, Yunia Verónica García-Tejeda, Everth Jimena Leal-Castañeda, and Víctor Barrera-Figueroa. 2020. "Effect of the Degree of Substitution on the Hydrophobicity, Crystallinity, and Thermal Properties of Lauroylated Amaranth Starch" Polymers 12, no. 11: 2548. https://doi.org/10.3390/polym12112548
APA StyleEspinosa-Solis, V., García-Tejeda, Y. V., Leal-Castañeda, E. J., & Barrera-Figueroa, V. (2020). Effect of the Degree of Substitution on the Hydrophobicity, Crystallinity, and Thermal Properties of Lauroylated Amaranth Starch. Polymers, 12(11), 2548. https://doi.org/10.3390/polym12112548