High Silica Content Graphene/Natural Rubber Composites Prepared by a Wet Compounding and Latex Mixing Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of SiO2/rGO/NR Composites
2.3. Characterization
3. Results and Discussion
3.1. Effect of CDHC on Preparation of SiO2/rGO/NR Composites
3.2. Dispersion of Graphene and Silica in SiO2/rGO/NR Composites
3.3. Mechanical Properties of Different 60SiO2/rGO/NR Composites
3.4. Dynamic Mechanical Properties of 60SiO2/rGO/NR Composite
3.5. Water Vapor Permeability Properties
3.6. Dielectric and Electrical Property
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yatsuyanagi, F.; Suzuki, N.; Ito, M.; Kaidou, H. Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems. Polymer 2001, 42, 9523–9529. [Google Scholar] [CrossRef]
- Yang, S.Y.; Liu, L.; Jia, Z.X.; Fu, W.W.; Jia, D.M.; Luo, Y.F. Study on the structure-properties relationship of natural rubber/SiO2 composites modified by a novel multi-functional rubber agent. Express. Polym. Lett. 2014, 8, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Włoch, M.; Kosiorek, P.; Błażek, K.; Datta, J. Mechanical and thermo-mechanical properties of natural rubber composites filled with submicron and nano-sized silica particles and prepared using glycolysate as a plasticizer. Elastomery 2017, 21, 75–81. [Google Scholar]
- Jin, J.M.; Noordermeer, J.W.M.; Dierkes, W.K.; Blume, A. The Effect of Silanization Temperature and Time on the Marching Modulus of Silica-Filled Tire Tread Compounds. Polymers 2020, 12, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.H.; Guo, M.M.; Zhai, X.B.; Ye, X.; Zhang, L.Q. Using Epoxidized Solution Polymerized Styrene-Butadiene Rubbers (ESSBRs) as Coupling Agents to Modify Silica without Volatile Organic Compounds. Polymers 2020, 12, 1257. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Cho, K.S. Filler–elastomer interactions: Influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites. J. Colloid. Interf. Sci. 2003, 267, 86–91. [Google Scholar] [CrossRef]
- Gui, Y.; Zheng, J.C.; Ye, X.; Han, D.L.; Xi, M.M.; Zhang, L.Q. Preparation and performance of silica/SBR masterbatches with high silica loading by latex compounding method. Compos. Part. B-Eng. 2016, 85, 130–139. [Google Scholar] [CrossRef]
- David, A.; Pasquini, M.; Tartaglino, U.; Raos, G. A Coarse-Grained Force Field for Silica–Polybutadiene Interfaces and Nanocomposites. Polymers 2020, 12, 1484. [Google Scholar] [CrossRef]
- Zhang, C.F.; Tang, Z.H.; Guo, B.C.; Zhang, L.Q. Significantly improved rubber-silica interface via subtly controlling surface chemistry of silica. Compos. Sci. Technol. 2018, 156, 70–77. [Google Scholar] [CrossRef]
- Castellano, M.; Conzatti, L.; Turturro, A.; Costa, G.; Busca, G. Influence of the Silane Modifiers on the Surface Thermodynamic Characteristics and Dispersion of the Silica into Elastomer Compounds. J. Phys. Chem. B. 2007, 111, 4495–4502. [Google Scholar] [CrossRef]
- Kaewsakul, W.; Sahakaro, K.; Dierkes, W.K.; Noordermeer, J.W.M. Mechanistic aspects of silane coupling agents with different functionalities on reinforcement of silica-filled natural rubber compounds. Polym. Eng. Sci. 2015, 55, 836–842. [Google Scholar] [CrossRef]
- Zou, Y.K.; He, J.W.; Tang, Z.H.; Zhu, L.X.; Luo, Y.F.; Liu, F. Effect of multifunctional samarium lysine dithiocarbamate on curing properties, static and dynamic mechanical properties of SBR/silica composites. RSC Adv. 2016, 6, 269–280. [Google Scholar] [CrossRef]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-Based Ultracapacitors. Nano. Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.G.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Zhan, Y.H.; Wang, J.; Zhang, K.Y.; Li, Y.C.; Meng, Y.Y.; Yan, N.; Wei, W.K.; Peng, F.B.; Xia, H.S. Fabrication of a Flexible Electromagnetic Interference Shielding Fe3O4@Reduced Graphene Oxide/Natural Rubber Composite with Segregated Network. Chem. Eng. J. 2018, 344, 184–193. [Google Scholar] [CrossRef]
- Sanchez-Hidalgo, R.; Blanco, C.; Menendez, R.; Verdejo, R.; Lopez-Manchado, M.A. Multifunctional Silicone Rubber Nanocomposites by Controlling the Structure and Morphology of Graphene Material. Polymers 2019, 11, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentini, L.; Bittolo Bon, S.; Lopez-Manchado, M.A.; Verdejo, R.; Pappalardo, L.; Bolognini, A.; Alvino, A.; Borsini, S.; Berardo, A.; Pugno, N.M. Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites. Compos. Sci. Technol. 2016, 128, 123–130. [Google Scholar] [CrossRef]
- Frasca, D.; Schulze, D.; Wachtendorf, V.; Krafft, B.; Rybak, T.; Schartel, B. Multilayer Graphene/Carbon Black/Chlorine Isobutyl Isoprene Rubber Nanocomposites. Polymers 2016, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Liu, S.Q.; Peng, J.; Liu, L. The filler–rubber interface and reinforcement in styrene butadiene rubber composites with graphene/silica hybrids: A quantitative correlation with the constrained region. Compos. Part. A-Appl. S. 2016, 86, 19–30. [Google Scholar] [CrossRef]
- Liu, Z.J.; Zhang, Y. Enhanced mechanical and thermal properties of SBR composites by introducing graphene oxide nanosheets decorated with silica particles. Compos. Part. A-Appl. S. 2017, 102, 236–242. [Google Scholar] [CrossRef]
- Liu, Z.J.; Zhang, H.M.; Song, S.Q.; Zhang, Y. Improving thermal conductivity of styrene-butadiene rubber composites by incorporating mesoporous silica@ solvothermal reduced graphene oxide hybrid nanosheets with low graphene content. Compos. Sci. Technol. 2017, 150, 174–180. [Google Scholar] [CrossRef]
- Zhao, S.; Xie, S.C.; Sun, P.P.; Zhao, Z.; Li, L.; Shao, X.M.; Liu, X.L.; Xin, Z.X. Synergistic effect of graphene and silicon dioxide hybrids through hydrogen bonding self-assembly in elastomer composites. RSC Adv. 2018, 8, 17813–17825. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.B.; Zheng, L.; Liu, D.H.; Xu, Z.C.; Zhang, L.Q.; Liu, L.; Wen, S.P. Improved mechanical and fatigue properties of graphene oxide/silica/SBR composites. RSC Adv. 2017, 7, 40813–40818. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Fei, G.X.; Pan, Y.Q.; Zhang, K.Y.; Hao, S.; Zheng, Z.; Xia, H.S. Simultaneous reduction and surface functionalization of graphene oxide by cystamine dihydrochloride for rubber composites. Compos. Part. A-Appl. S. 2019, 122, 18–26. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Y.; Zeng, Z.; Zhu, J.; Wei, Y.; Li, F.; Liu, L. Effect of ZnO nanoparticles doped graphene on static and dynamic mechanical properties of natural rubber composites. Compos. Part. A-Appl. S. 2015, 70, 35–44. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Yu, W.; Zhang, L.Y.; Yin, J.S.; Wang, J.K.; Xie, H.Q. Thermal Conductivity and Mechanical Properties of Low-Density Silicone Rubber Filled With Al2O3 and Graphene Nanoplatelets. J. Therm. Sci. Eng. Appl. 2018, 10, 011014. [Google Scholar] [CrossRef]
- Wu, S.Y.; Zhang, L.Q.; Weng, P.J.; Yang, Z.J.; Tang, Z.H.; Guo, B.C. Correlating synergistic reinforcement with chain motion in elastomer/nanocarbon hybrids composites. Soft. Matter 2016, 12, 6893–6901. [Google Scholar] [CrossRef]
- Zhan, Y.H.; Wu, J.K.; Xia, H.S.; Yan, N.; Fei, G.X.; Yuan, G.P. Dispersion and Exfoliation of Graphene in Rubber by an Ultrasonically-Assisted Latex Mixing and In situ Reduction Process. Macromol. Mater. Eng. 2011, 296, 590–602. [Google Scholar] [CrossRef]
- Zhan, Y.H.; Lavorgna, M.; Buonocore, G.; Xia, H.S. Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J. Mater. Chem. 2012, 22, 10464–10468. [Google Scholar] [CrossRef]
- Schopp, S.; Thomann, R.; Ratzsch, K.-F.; Kerling, S.; Altstädt, V.; Mülhaupt, R. Functionalized Graphene and Carbon Materials as Components of Styrene-Butadiene Rubber Nanocomposites Prepared by Aqueous Dispersion Blending. Macromol. Mater. Eng. 2014, 299, 319–329. [Google Scholar] [CrossRef]
- Tian, M.; Zhang, J.; Zhang, L.Q.; Liu, S.T.; Zan, X.Q.; Nishi, T.; Ning, N.Y. Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold. J. Colloid. Interf. Sci. 2014, 430, 249–256. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Sinturel, C.; Bahloul, O.; Saboungi, M.-L.; Thomas, S.; Salvetat, J.-P. Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 2008, 46, 1037–1045. [Google Scholar] [CrossRef]
- Leblanc, J.; Hardy, P. Evolution of bound rubber during the storage of uncured compounds. Kgk-Kaut. Gummi. Kunst. 1991, 44, 1119–1124. [Google Scholar]
- Wang, J.; Zhang, K.; Cheng, Z.G.; Lavorgna, M.; Xia, H.S. Graphene/carbon black/natural rubber composites prepared by a wet compounding and latex mixing process. Plast Rubber Compos. 2018, 47, 398–412. [Google Scholar] [CrossRef]
- Zheng, J.C.; Ye, X.; Han, D.L.; Zhao, S.H.; Wu, X.H.; Wu, Y.P.; Dong, D.; Wang, Y.Q.; Zhang, L.Q. Silica Modified by Alcohol Polyoxyethylene Ether and Silane Coupling Agent Together to Achieve High Performance Rubber Composites Using the Latex Compounding Method. Polymers 2018, 10, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, Y.; Pochan, J.M. Mechanics of Polymer−Clay Nanocomposites. Macromolecules 2007, 40, 290–296. [Google Scholar] [CrossRef]
- Tang, Z.H.; Zhang, L.Q.; Feng, W.J.; Guo, B.C.; Liu, F.; Jia, D.M. Rational Design of Graphene Surface Chemistry for High-Performance Rubber/Graphene Composites. Macromolecules 2014, 47, 8663–8673. [Google Scholar] [CrossRef] [Green Version]
- Yan, N.; Buonocore, G.; Lavorgna, M.; Kaciulis, S.; Balijepalli, S.K.; Zhan, Y.H.; Xia, H.S.; Ambrosio, L. The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites. Compos. Sci. Technol. 2014, 102, 74–81. [Google Scholar] [CrossRef]
- Lin, H.Q.; Van Wagner, E.; Swinnea, J.S.; Freeman, B.D.; Pas, S.J.; Hill, A.J.; Kalakkunnath, S.; Kalika, D.S. Transport and structural characteristics of crosslinked poly (ethylene oxide) rubbers. J. Membrane Sci. 2006, 276, 145–161. [Google Scholar] [CrossRef]
- Xia, J.L.; Chen, F.; Li, J.H.; Tao, N.J. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 2009, 4, 505–509. [Google Scholar] [CrossRef] [PubMed]
Sample | rGO | Silica | CDHC | NRL | Raw NR |
---|---|---|---|---|---|
60SiO2/NR (W-0) | 0 | 60 | 10 | 166.7 | 0 |
60SiO2/0.5rGO/NR (W-0.5) | 0.5 | 60 | 10 | 166.7 | 0 |
60SiO2/1rGO/NR (W-1) | 1 | 60 | 10 | 166.7 | 0 |
60SiO2/1.5rGO/NR (W-1.5) | 1.5 | 60 | 10 | 166.7 | 0 |
60SiO2/2rGO/NR (W-2) | 2 | 60 | 10 | 166.7 | 0 |
60SiO2/NR (L-0) | 0 | 60 | 10 | 0 | 100 |
60SiO2/0.5rGO/NR (L-0.5) | 0.5 | 60 | 10 | 7.5 | 95.5 |
60SiO2/1rGO/NR (L-1) | 1 | 60 | 10 | 15 | 91 |
60SiO2/1.5rGO/NR (L-1.5) | 1.5 | 60 | 10 | 22.5 | 86.5 |
60SiO2/2rGO/NR (L-2) | 2 | 60 | 10 | 30 | 82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, K.; Fei, G.; Salzano de Luna, M.; Lavorgna, M.; Xia, H. High Silica Content Graphene/Natural Rubber Composites Prepared by a Wet Compounding and Latex Mixing Process. Polymers 2020, 12, 2549. https://doi.org/10.3390/polym12112549
Wang J, Zhang K, Fei G, Salzano de Luna M, Lavorgna M, Xia H. High Silica Content Graphene/Natural Rubber Composites Prepared by a Wet Compounding and Latex Mixing Process. Polymers. 2020; 12(11):2549. https://doi.org/10.3390/polym12112549
Chicago/Turabian StyleWang, Jian, Kaiye Zhang, Guoxia Fei, Martina Salzano de Luna, Marino Lavorgna, and Hesheng Xia. 2020. "High Silica Content Graphene/Natural Rubber Composites Prepared by a Wet Compounding and Latex Mixing Process" Polymers 12, no. 11: 2549. https://doi.org/10.3390/polym12112549
APA StyleWang, J., Zhang, K., Fei, G., Salzano de Luna, M., Lavorgna, M., & Xia, H. (2020). High Silica Content Graphene/Natural Rubber Composites Prepared by a Wet Compounding and Latex Mixing Process. Polymers, 12(11), 2549. https://doi.org/10.3390/polym12112549