Properties of Thermoplastic-Bonded Plywood: Effects of the Wood Species and Types of the Thermoplastic Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Manufacturing of Plywood Samples
2.3. Panel Testing
2.4. Statistical Analysis
3. Results and Discussion
3.1. Thickness and Density of Plywood Samples
3.2. Bending Strength and Modulus of Elasticity in Bending of Plywood Samples
3.3. Bonding Quality of Plywood Samples
3.4. Water Absorption and Thickness Swelling of Plywood Samples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Statistical Analysis
Variables | Parameter | SS | df | MS | F | Sig. |
---|---|---|---|---|---|---|
A | Thickness | 0.516 | 3 | 0.172 | 43.273 | 0.000 |
Density | 5333.171 | 3 | 1777.724 | 3.371 | 0.021 | |
TS (2 h) | 301.708 | 3 | 100.569 | 110.812 | 0.000 | |
TS (24 h) | 596.543 | 3 | 198.848 | 90.455 | 0.000 | |
WA (2 h) | 3138.794 | 3 | 1046.265 | 66.364 | 0.000 | |
WA (24 h) | 5973.605 | 3 | 1991.202 | 112.867 | 0.000 | |
W | Thickness | 1.757 | 2 | 0.878 | 220.842 | 0.000 |
Density | 1,382,999.814 | 2 | 691,499.907 | 1311.200 | 0.000 | |
TS (2 h) | 111.794 | 2 | 55.897 | 61.590 | 0.000 | |
TS (24 h) | 124.645 | 2 | 62.323 | 28.350 | 0.000 | |
WA (2 h) | 1518.766 | 2 | 759.383 | 48.167 | 0.000 | |
WA (24 h) | 2798.687 | 2 | 1399.344 | 79.319 | 0.000 | |
A × W | Thickness | 0.599 | 6 | 0.100 | 25.117 | 0.000 |
Density | 21,883.164 | 6 | 3647.194 | 6.916 | 0.000 | |
TS (2 h) | 69.138 | 6 | 11.523 | 12.697 | 0.000 | |
TS (24 h) | 196.978 | 5 | 39.396 | 17.921 | 0.000 | |
WA (2 h) | 876.147 | 6 | 146.025 | 9.262 | 0.000 | |
WA (24 h) | 1162.316 | 6 | 193.719 | 10.981 | 0.000 |
Variables | Parameter | SS | df | MS | F | Sig. |
---|---|---|---|---|---|---|
A | MOR | 25,068.998 | 3 | 8356.333 | 137.170 | 0.000 |
MOE | 9,070,565.122 | 3 | 3,023,521.707 | 3.124 | 0.032 | |
TSS | 602.642 | 3 | 200.881 | 553.556 | 0.000 | |
ShS | 26.667 | 3 | 8.889 | 346.858 | 0.000 | |
W | MOR | 15,813.783 | 2 | 7906.891 | 129.792 | 0.000 |
MOE | 2.173 × 108 | 2 | 1.087 × 108 | 112.275 | 0.000 | |
TSS | 111.563 | 2 | 55.781 | 153.714 | 0.000 | |
ShS | 10.978 | 2 | 5.489 | 214.178 | 0.000 | |
A × W | MOR | 15,236.552 | 6 | 2539.425 | 41.685 | 0.000 |
MOE | 54,482,070.823 | 6 | 9,080,345.137 | 9.382 | 0.000 | |
TSS | 100.071 | 6 | 16.678 | 45.960 | 0.000 | |
ShS | 10.293 | 6 | 1.716 | 66.940 | 0.000 |
Variable | Thickness (mm) | Density (kg/m3) | MOR (MPa) | MOE (MPa) | ShS (MPa) | TSS (MPa) | TS (24 h) (%) | WA (24 h) (%) |
---|---|---|---|---|---|---|---|---|
Adhesive: | ||||||||
MUF | 9.06 ± 0.04 c | 627.49 ± 124.89 c | 99.81 ± 20.00 b | 13,014.88 ± 1767.26 a | 2.02 ± 0.36 c | 10.17 ± 1.97 d | 7.25 ± 1.70 a | 32.80 ± 5.36 a |
LDPE | 8.97 ± 0.18 b | 612.26 ± 130.82 ab | 72.28 ± 12.74 a | 12,959.76 ± 1436.76 a | 1.18 ± 0.14 a | 4.52 ± 0.59 a | 12.88 ± 1.92 c | 52.90 ± 7.58 c |
CoPA | 8.91 ± 0.15 a | 622.11 ± 115.85 bc | 112.18 ± 27.20 c | 13,248.43 ± 3113.24 ab | 2.51 ± 0.83 d | 7.70 ± 0.70 b | 11.30 ± 2.94 b | 42.49 ± 7.56 b |
CoPE | 8.89 ± 0.21 a | 609.01 ± 112.98 a | 116.10 ± 23.41 c | 13,819.41 ± 1950.06 b | 1.78 ± 0.21 b | 9.29 ± 1.87 c | 12.35 ± 2.00 c | 43.48 ± 9.71 b |
Wood species: | ||||||||
Beech | 9.08 ± 0.02 c | 715.79 ± 8.76 c | 109.91 ± 33.61 b | 14,167.62 ± 947.03 b | 2.16 ± 0.72 b | 8.40 ± 2.54 b | 11.20 ± 2.85 b | 48.65 ± 7.80 c |
Birch | 8.99 ± 0.09 b | 665.05 ± 22.69 b | 109.37 ± 23.34 b | 14,792.66 ± 1236.69 c | 2.10 ± 0.69 b | 8.58 ± 2.94 b | 11.46 ± 2.46 b | 35.89 ± 10.08 a |
Spruce | 8.81 ± 0.16 a | 483.22 ± 11.20 a | 79.51 ± 7.26 a | 11,028.88 ± 1627.14 a | 1.40 ± 0.26 a | 6.62 ± 1.57 a | 9.63 ± 3.58 a | 41.75 ± 8.56 b |
References
- FAO. FAO Yearbook of Forest Products 2018. 2020. Available online: http://www.fao.org/3/cb0513m/CB0513M.pdf (accessed on 11 August 2020).
- Dunky, M. Adhesives in the wood industry. In Handbook of Adhesive Technology, 2nd ed.; Revised and Expanded; Pizzi, A., Mittal, K.L., Eds.; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2003; 71p. [Google Scholar] [CrossRef]
- Łebkowska, M.; Załęska–Radziwiłł, M.; Tabernacka, A. Adhesives based on formaldehyde—Environmental problems. BioTechnologia 2017, 98, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Monographs on the Evaluation of Carcinogenic Risk to Humans; Formaldehyde, 2–Butoxyethanol and 1–tert–Butoxypropan–2–ol; World Health Organization—International Agency for Research on Cancer: Lyon, France, 2006; Volume 88.
- Roffael, E. Die Formaldehydabgabe von Spanplatten und anderen Werkstoffen [The Release of Formaldehyde from Particleboards and Other Materials]; DRW–Verlag: Stuttgart, Germany, 1982. [Google Scholar]
- Myers, G.E. How mole ratio of UF resin affects formaldehyde emission and other properties: A literature critique. For. Prod. J. 1984, 34, 35–41. [Google Scholar]
- Myers, G.E. Effects of post–manufacture board treatments on formaldehyde emission: A literature review (1960–1984). For. Prod. J. 1986, 36, 41–51. [Google Scholar]
- Kim, S.; Kim, H.J.; Kim, H.S.; Lee, H.H. Effect of Bio-Scavengers on the Curing Behavior and Bonding Properties of Melamine-Formaldehyde Resins. Macromol. Mater. Eng. 2006, 291, 1027–1034. [Google Scholar] [CrossRef]
- Kmec, S.; Sedliacik, J.; Smidriakova, M.; Jablonski, M. Zeolite as a filler of UF resin for lower formaldehyde emission from plywood. Ann. Warsaw Univ. Life Sci. 2010, 70, 161–165. [Google Scholar]
- Moubarik, A.; Allal, A.; Pizzi, A.; Charreir, B.; Carreir, F. Characterization of a formaldehyde–free cornstarch–tannin wood adhesive for interior plywood. Eur. J. Wood Prod. 2010, 68, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Li, W.; Gao, Q.; Han, C.; Zhang, S.; Li, J. The effects of sealing treatment and wood species on formaldehyde emission of plywood. BioResources 2013, 8, 2568–2582. [Google Scholar] [CrossRef]
- Gangi, M.; Tabarsa, T.; Sepahvand, S.; Asghari, J. Reduction of formaldehyde emission from plywood. J. Adhes. Sci. Technol. 2013, 27, 1407–1417. [Google Scholar] [CrossRef]
- Sorensen, R. Dry film gluing in plywood manufacture. In Proceedings of the Semi-Annual Meeting of the American Society of Mechanical Engineers, Chicago, IL, USA, 26 June–1 July 1933; pp. 37–48. [Google Scholar]
- Chaharmahali, M.; Mirbagheri, J.; Tajvidi, M.; Najafi, S.K.; Mirbagheri, Y. Mechanical and Physical Properties of Wood-Plastic Composite Panels. J. Reinf. Plast. Comp. 2010, 29, 310–319. [Google Scholar] [CrossRef]
- Niska, K.; Sain, M. Wood-Polymer Composites; Woodhead Publishing Limited: Cambridge, UK, 2008. [Google Scholar]
- Kajaks, J.; Reihmane, S.; Grinbergs, U.; Kalnins, K. Use of innovative environmentally friendly adhesives for wood veneer bonding. Proc. Est. Acad. Sci. 2012, 61, 207–211. [Google Scholar] [CrossRef]
- Bekhta, P.; Sedliačik, J. Environmentally-Friendly High-Density Polyethylene-Bonded Plywood Panels. Polymers 2019, 11, 1166. [Google Scholar] [CrossRef] [Green Version]
- Cui, T.; Song, K.; Zhang, S. Research on utilizing recycled plastic to make environment-friendly plywood. For. Stud. China 2010, 12, 218–222. [Google Scholar] [CrossRef]
- Fang, L.; Chang, L.; Guo, W.; Chen, Y.; Wang, Z. Manufacture of environmentally friendly plywood bonded with plastic film. For. Prod. J. 2013, 63, 283–287. [Google Scholar] [CrossRef]
- Song, W.; Wei, W.; Ren, C.; Zhang, S. Developing and evaluating composites based on plantation eucalyptus rotary-cut veneer and high-density polyethylene film as novel building materials. BioResources 2016, 11, 3318–3331. [Google Scholar] [CrossRef]
- Demirkir, C.; Öztürk, H.; Çolakoğlu, G. Effects of press parameters on some technological properties of polystyrene composite plywood. Kast. Univ. J. For. Fac. 2017, 17, 517–522. [Google Scholar] [CrossRef]
- Chang, L.; Guo, W.; Tang, Q. Assessing the tensile shear strength and interfacial bonding mechanism of poplar plywood with high-density polyethylene films as adhesive. BioResources 2017, 12, 571–585. [Google Scholar] [CrossRef]
- Song, W.; Wei, W.; Li, X.; Zhang, S. Utilization of polypropylene film as an adhesive to prepare formaldehyde-free, weather-resistant plywood-like composites: Process optimization, performance evaluation, and interface modification. BioResources 2017, 12, 228–254. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Tang, Q.; Gao, L.; Fang, L.; Wang, Z.; Guo, W. Fabrication and characterization of HDPE resins as adhesives in plywood. Eur. J. Wood Prod. 2018, 76, 325–335. [Google Scholar] [CrossRef]
- Oh, Y.S. Use of polyethylene as an additive in plywood adhesive. J. Korean Wood Sci. Technol. 1998, 26, 14–18. [Google Scholar]
- de Barros Lustosa, E.C.; Del Menezzi, C.H.S.; de Melo, R.R. Production and properties of a new wood laminated veneer/high-density polyethylene composite board. Mater. Res. 2015, 18, 994–999. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Chang, L.; Guo, W.; Ren, Y.; Wang, Z. Preparation and characterization of wood-plastic plywood bonded with high density polyethylene film. Eur. J. Wood Prod. 2013, 71, 739–746. [Google Scholar] [CrossRef]
- Borysiuk, P.; Mamiński, M.Ł.; Parzuchowski, P.; Zado, A. Application of polystyrene as binder for veneers bonding—The effect of pressing parameters. Eur. J. Wood Prod. 2010, 68, 487–489. [Google Scholar] [CrossRef] [Green Version]
- Matuana, L.M.; Balatinecz, J.J.; Park, C.B. Effect of surface properties on the adhesion between PVC and wood veneer laminates. Polym. Eng. Sci. 1998, 38, 765–773. [Google Scholar] [CrossRef]
- Song, W.; Wei, W.; Wang, D.; Zhang, S. Preparation and properties of new plywood composites made from surface modified veneers and polyvinyl chloride films. BioResources 2017, 12, 8320–8339. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Z.G.; Qi, J.; Zhao, J.R.; Feng, Y. The preparation and application of a new formaldehyde-free adhesive for plywood. Int. J. Adhes. Adhes. 2011, 31, 507–512. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Z.G.; Qi, J.; Zhao, J.R.; Feng, Y. A new formaldehyde-free adhesive for plywood made by in-situ chlorinating grafting of MAH onto HDPE. Eur. J. Wood Prod. 2012, 70, 377–379. [Google Scholar] [CrossRef]
- Chang, L.; Wang, Z.; Guo, W.J.; Ren, Y.P. Study on hot-press process factors of wood-plastic composite plywood. Wood Process. Mach. 2009, 6, 12–15. [Google Scholar]
- Hu, Y.; Nakao, T.; Nakai, T.; Gu, J.; Wang, F. Vibrational properties of wood plastic plywood. J. Wood Sci. 2005, 51, 13–17. [Google Scholar] [CrossRef]
- Grinbergs, U.; Kajaks, J.; Reihmane, S. Usage of Ecologically Perspective Adhesives for Wood Bonding. Sci. J. Riga Tech. Univ. Mater. Sci. Appl. Chem. 2010, 22, 114–117. [Google Scholar]
- Fang, L.; Chang, L.; Guo, W.-J.; Chen, Y.; Wang, Z. Influence of silane surface modification of veneer on interfacial adhesion of wood–plastic plywood. Appl. Surf. Sci. 2014, 288, 682–689. [Google Scholar] [CrossRef]
- Fang, L.; Xiong, X.; Wang, X.; Chen, H.; Mo, X. Effects of surface modification methods on mechanical and interfacial properties of high-density polyethylene-bonded wood veneer composites. J. Wood Sci. 2017, 63, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Bal, B.C.; Bektas, I. Some mechanical properties of plywood produced from eucalyptus, beech, and poplar veneer. Maderas Cienc. Tecnol. 2014, 16, 99–108. [Google Scholar] [CrossRef] [Green Version]
- EN 315. Plywood. Tolerances for Dimensions; European Committee for Standardization: Brussels, Belgium, 2000. [Google Scholar]
- EN 323. Wood-Based Panels—Determination of Density; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- EN 310. Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength; European Committee for Standartiztion: Brussels, Belgium, 1993. [Google Scholar]
- EN 302-1. Adhesives for Load-Bearing Timber Structures—Test Methods—Part 1: Determination of Bond Strength in Longitudinal Tensile Shear Strength; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- EN 314-1. Plywood—Bonding Quality—Part 1: Test Methods; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- EN 314-2. Plywood—Bonding Quality—Part 2: Requirements; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- EN 317. Particleboards and Fibreboards. Determination of Swelling in Thickness after Immersion in Water; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- Shukla, S.R.; Kamdem, D.P. Properties of laboratory made yellow poplar (Liriodendron tulipifera) laminated veneer lumber: Effect of the adhesives. Eur. J. Wood Prod. 2009, 67, 397–405. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.; Cao, Y.; Zhang, S.; Song, W. Effect of Adhesive Content and Modification Method on Physical and Mechanical Properties of Eucalyptus Veneer–Poly-β-Hydroxybutyrate Film Composites. For. Prod. J. 2018, 68, 419–429. [Google Scholar] [CrossRef]
- Aydın, İ.; Çolak, S.; Çolakoğlu, G.; Salih, E. A comparative study on some physical and mechanical properties of laminated veneer lumber (LVL) produced from beech (Fagus orientalis L.) and eucalyptus (Eucalyptus camaldulensis dehn.) veneers. Holz Roh Werkst. 2004, 62, 218–220. [Google Scholar] [CrossRef]
- Özalp, M.; Atılgan, A.; Esen, Z.; Kaya, S. Comparing the resistance and bending in the plywood which each made with different glues. J. Inst. Sci. Technol. Dumlupınar Univ. 2009, 18, 99–104. [Google Scholar]
- Ugolev, B.N. Drevesinovedenie i Lesnoe Tovarovedenie [Wood Science and Forest Commodity Science]; GOU VPO MGUL: Moscow, Russia, 2007; 351p. [Google Scholar]
- Glass, S.V.; Zelinka, S.L. Moisture Relations and Physical Properties of Wood. In Wood Handbook—Wood as an Engineering Material; General Technical Report FPL-GTR-190; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Chapter 4, 4–1–4–19. [Google Scholar]
- Kretschmann, D.E. Mechanical Properties of Wood. In Wood Handbook—Wood as an Engineering Material. General Technical Report FPL-GTR-190; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Chapter 5, 5–1–5–46. [Google Scholar]
- Frihart, C.R.; Hunt, C.G. Adhesives with Wood Materials: Bond Formation and Performance. In Wood Handbook—Wood as an Engineering Material; General Technical Report FPL-GTR-190; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Chapter 10. [Google Scholar]
- Kajaks, J.A.; Bakradze, G.G.; Viksne, A.V.; Reihmane, S.A.; Kalnins, M.M.; Krutohvostov, R. The use of polyolefins-based hot melts for wood bonding. Mech. Compos. Mater. 2009, 45, 643–650. [Google Scholar] [CrossRef]
- Smith, M.J.; Dai, H.; Ramani, K. Wood-thermoplastic adhesive interface—Method of characterization and results. Int. J. Adhesion Adhes. 2002, 22, 197–204. [Google Scholar] [CrossRef]
- Goto, T.; Saiki, H.; Onishi, H. Studies on wood gluing. XIII: Gluability and scanning electron microscopic study of wood-polypropylene bonding. Wood Sci. Technol. 1982, 16, 293–303. [Google Scholar] [CrossRef]
- Han, K.S.; Lee, H.H. Adhesion characteristics and anatomic scanning of plywood bonded by high density polyethylene. J. Korean Wood Sci. Technol. 1997, 25, 16–23. [Google Scholar]
- Kang, E.; Lee, S.-M.; Park, J.-Y. Adhesion Performance of Plywoods Prepared with Different Layering Methods of Thermoplastic Resin Films. J. Korean Wood Sci. Technol. 2017, 45, 559–571. [Google Scholar] [CrossRef]
- Örs, Y.; Çolakoğlu, G.; Aydın, İ.; Çolak, S. Comparison of some technical properties of plywood produced from beech, okoume and poplar rotary cut veneers in different combinations. J. Polytechnic 2002, 5, 257–265. [Google Scholar]
- Öztürk, H.; Demir, A.; Çolak, S. Some mechanical properties of plywood produced using with polyethylene as adhesive from different wood species. Kast. Univ. J. For. Fac. 2017, 17, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Bekhta, P.; Proszyk, S.; Krystofiak, T.; Mamonova, M.; Pinkowski, G.; Lis, B. Effect of thermomechanical densification on surface roughness of wood veneers. Wood Mater. Sci. Eng. 2014, 9, 233–245. [Google Scholar] [CrossRef]
- Faust, T.D.; Rice, J.T. Effect of veneer surface roughness on glue-bond quality in Southern pine plywood. For. Prod. J. 1986, 36, 57–62. [Google Scholar]
- Kantay, R.; Unsal, O.; Korkut, S. Investigations of surface roughness of sliced Walnut and Beech veneers produced in Turkey. Rev. For. Fac. Univ. Istanbul Ser. A 2003, 51, 15–31. [Google Scholar]
- Neese, J.L.; Reeb, J.E.; Funck, J.W. Relating traditional surface roughness measures to gluebond quality in plywood. For. Prod. J. 2004, 54, 67–73. [Google Scholar]
- Halligan, A.F. A review of thickness swelling in particleboard. Wood Sci. Technol. 1970, 4, 301–312. [Google Scholar] [CrossRef]
- Rowell, R.M.; Pettersen, R.; Han, J.S.; Rowell, J.S.; Tshabalala, M.A. Cell Wall Chemistry. In Handbook of Wood Chemistry and Wood Composites; Rowell, R.M., Ed.; CRC Press LLC: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2005; pp. 35–74. [Google Scholar]
Type | Thickness (mm) | Density (g/cm3) | Melting Temperature (°C) |
---|---|---|---|
LDPE | 0.06 | 0.95 | 105–115 |
CoPA | 0.04 | 1.10 | 120–130 |
CoPE | 0.05 | 1.25 | 120–130 |
Test No. | Manufacturing Conditions | ||||
---|---|---|---|---|---|
Adhesive Type | Wood Species | Pressing Pressure (MPa) | Pressing Temperature (°C) | Pressing Time (min) | |
1 | MUF, LDPE, CoPA, CoPE | Beech, birch, spruce | 0.8 | 150 | 5 |
Adhesive | Wood Species | Percentage of Wood Failure (%) | |
---|---|---|---|
Shear Strength Test | Tensile Shear Strength Test | ||
MUF | Beech | 92 | 99 |
Birch | 77 | 100 | |
Spruce | 97 | 99 | |
LDPE | Beech | 0 | 0 |
Birch | 0 | 2 | |
Spruce | 0 | 5 | |
CoPa | Beech | 78 | 64 |
Birch | 82 | 79 | |
Spruce | 99 | 100 | |
CoPE | Beech | 4 | 72 |
Birch | 14 | 90 | |
Spruce | 88 | 98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekhta, P.; Müller, M.; Hunko, I. Properties of Thermoplastic-Bonded Plywood: Effects of the Wood Species and Types of the Thermoplastic Films. Polymers 2020, 12, 2582. https://doi.org/10.3390/polym12112582
Bekhta P, Müller M, Hunko I. Properties of Thermoplastic-Bonded Plywood: Effects of the Wood Species and Types of the Thermoplastic Films. Polymers. 2020; 12(11):2582. https://doi.org/10.3390/polym12112582
Chicago/Turabian StyleBekhta, Pavlo, Marcus Müller, and Ilona Hunko. 2020. "Properties of Thermoplastic-Bonded Plywood: Effects of the Wood Species and Types of the Thermoplastic Films" Polymers 12, no. 11: 2582. https://doi.org/10.3390/polym12112582
APA StyleBekhta, P., Müller, M., & Hunko, I. (2020). Properties of Thermoplastic-Bonded Plywood: Effects of the Wood Species and Types of the Thermoplastic Films. Polymers, 12(11), 2582. https://doi.org/10.3390/polym12112582