Biodeterioration of Untreated Polypropylene Microplastic Particles by Antarctic Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polypropylene Microplastics
2.2. Microorganism and Microbial Inoculum Preparation
2.3. Assay for PP Microplastic Utilisation
2.4. Determination of Weight Loss of Residual PP Microplastics
2.5. Determination of Polymer Reduction Rate and Half-Life of Residual PP Microplastics
2.6. Fourier Transform Infrared (FTIR) Analysis of PP Microplastics
2.7. Statistical Analysis
3. Results and Discussion
3.1. Growth of Bacteria on PP-Supplemented Medium and Estimation of Weight Loss, Reduction Rate, and Half-Life of PP Microplastics
3.2. Changes in the pH of the Bushnell Haas (BH) Media
3.3. Changes in the PP Microplastic Structure
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rillig, M.C. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Gertsen, H.; Peters, P.; Salánki, T.; Geissen, V. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total Environ. 2018, 616–617, 1056–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derraik, J.G.B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef]
- Kim, J.-S.; Lee, H.-J.; Kim, S.-K.; Kim, H.-J. Global pattern of microplastics (MPs) in commercial food-grade salts: Sea salt as an indicator of seawater MP pollution. Environ. Sci. Technol. 2018, 52, 12819–12828. [Google Scholar] [CrossRef] [PubMed]
- Huerta Lwanga, E.; Thapa, B.; Yang, X.; Gertsen, H.; Salánki, T.; Geissen, V.; Garbeva, P. Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Sci. Total Environ. 2018, 624, 753–757. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, Q.-L.; An, X.-L.; Yang, X.-R.; Christie, P.; Ke, X.; Wu, L.-H.; Zhu, Y.-G. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol. Biochem. 2018, 116, 302–310. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Liu, X.; Li, Y.; Powell, T.; Wang, X.; Wang, G.; Zhang, P. Microplastics as contaminants in the soil environment: A mini-review. Sci. Total Environ. 2019, 691, 848–857. [Google Scholar] [CrossRef]
- Chae, Y.; An, Y.-J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ziersch, L.; Hempel, S. Microplastic transport in soil by earthworms. Sci. Rep. 2017, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Ingraffia, R.; de Souza Machado, A.A. Microplastic incorporation into soil in agroecosystems. Front. Plant Sci. 2017, 8, 1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of microplastics in soil ecosystems: Above and below ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef] [PubMed]
- Siracusa, V. Microbial degradation of synthetic biopolymers waste. Polymers 2019, 11, 1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Qureshi, A.; Purohit, H.J. Microbial degradation of plastics: Biofilms and degradation pathways. In Contaminants in Agriculture and Environment: Health Risks and Remediation; Agro Environ Media—Agriculture and Environmental Science Academy: Haridwar, India, 2019; pp. 184–199. [Google Scholar]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef]
- Suaria, G.; Perold, V.; Lee, J.R.; Lebouard, F.; Aliani, S.; Ryan, P.G. Floating macro- and microplastics around the Southern Ocean: Results from the Antarctic Circumnavigation Expedition. Environ. Int. 2020, 136, 105494. [Google Scholar] [CrossRef]
- Cincinelli, A.; Scopetani, C.; Chelazzi, D.; Lombardini, E.; Martellini, T.; Katsoyiannis, A.; Fossi, M.C.; Corsolini, S. Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR. Chemosphere 2017, 175, 391–400. [Google Scholar] [CrossRef]
- Bergami, E.; Rota, E.; Caruso, T.; Birarda, G.; Vaccari, L.; Corsi, I. Plastics everywhere: First evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus. Biol. Lett. 2020, 16, 20200093. [Google Scholar] [CrossRef]
- Jeon, H.J.; Kim, M.N. Isolation of mesophilic bacterium for biodegradation of polypropylene. Int. Biodeterior. Biodegrad. 2016, 115, 244–249. [Google Scholar] [CrossRef]
- Arkatkar, A.; Arutchelvi, J.; Bhaduri, S.; Uppara, P.V.; Doble, M. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int. Biodeterior. Biodegrad. 2009, 63, 106–111. [Google Scholar] [CrossRef]
- Pinto, M.; Langer, T.M.; Hüffer, T.; Hofmann, T.; Herndl, G.J. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS ONE 2019, 14, e0217165. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.R.; Jiang, M.; Wei, Q.; Leff, L.G. Microplastic surface properties affect bacterial colonization in freshwater. J. Basic Microbiol. 2019, 59, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Khoramnejadian, S. Microbial degradation of starch based polypropylene. J. Pure Appl. Microbiol. 2013, 7, 2857–2860. [Google Scholar]
- Gonçalves, S.P.C.; Franchetti, S.M.M. Biodegradation of PP and PE blended with PHBV in soil samples. Adv. Polym. Technol. 2015, 34, 21486. [Google Scholar]
- Mandal, D.K.; Bhunia, H.; Bajpai, P.K.; Chaudhari, C.V.; Dubey, K.A.; Varshney, L.; Kumar, A. Preparation and characterization of polypropylene/polylactide blends and nanocomposites and their biodegradation study. J. Thermoplast. Compos. Mater. 2019. Available online: https://journals.sagepub.com/doi/abs/10.1177/0892705719850601 (accessed on 22 October 2020).
- Arkatkar, A.; Juwarkar, A.A.; Bhaduri, S.; Uppara, P.V.; Doble, M. Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int. Biodeterior. Biodegrad. 2010, 64, 530–536. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Jayanthi, B.; Fauziah, S.H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 2018, 127, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Fontanella, S.; Bonhomme, S.; Brusson, J.-M.; Pitteri, S.; Samuel, G.; Pichon, G.; Lacoste, J.; Fromageot, D.; Lemaire, J.; Delort, A.-M. Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or Co. Polym. Degrad. Stab. 2013, 98, 875–884. [Google Scholar] [CrossRef]
- Smykla, J.; Drewnik, M.; Szarek-Gwiazda, E.; Hii, Y.S.; Knap, W.; Emslie, S.D. Variation in the characteristics and development of soils at Edmonson Point due to abiotic and biotic factors, northern Victoria Land, Antarctica. CATENA 2015, 132, 56–67. [Google Scholar] [CrossRef]
- Habib, S.; Ahmad, S.A.; Johari, W.L.W.; Shukor, M.Y.A.; Alias, S.A.; Khalil, K.A.; Yasid, N.A. Evaluation of conventional and response surface level optimisation of n-dodecane (n-C12) mineralisation by psychrotolerant strains isolated from pristine soil at Southern Victoria Island, Antarctica. Microb. Cell Factories 2018, 17, 44. [Google Scholar] [CrossRef]
- Urbanek, A.K.; Rymowicz, W.; Mirończuk, A.M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 2018, 102, 7669–7678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whyte, L.G.; Schultz, A.; van Beilen, J.B.; Luz, A.P.; Pellizari, V.; Labbé, D.; Greer, C.W. Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol. Ecol. 2002, 41, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Saruni, N.H.; Razak, S.A.; Habib, S.; Ahmad, S.A.; Alias, S.A.; Johari, W.L.W.; Smykla, J.; Yasid, N.A. Comparative screening methods for the detection of biosurfactant-producing capability of Antarctic hydrocarbon-degrading Pseudomonas sp. J. Environ. Microbiol. Toxicol. 2019, 7, 44–47. [Google Scholar]
- Habib, S.; Ahmad, S.A.; Wan Johari, W.L.; Abd Shukor, M.Y.; Alias, S.A.; Smykla, J.; Saruni, N.H.; Abdul Razak, N.S.; Yasid, N.A. Production of lipopeptide biosurfactant by a hydrocarbon-degrading Antarctic Rhodococcus. Int. J. Mol. Sci. 2020, 21, 6138. [Google Scholar] [CrossRef]
- Abubakar, M.; Habib, N.M.S.A.; Manogaran, M.; Yasid, N.A.; Alias, S.A.; Ahmad, S.A.; Smykla, J.; Hassan, M.A.; Shukor, M.Y.A. Response surface-based optimization of the biodegradation of a simulated vegetable oily ballast wastewater under temperate conditions using the Antarctic bacterium Rhodococcus erythropolis ADL36. Desalin. Water Treat. 2019, 144, 129–137. [Google Scholar] [CrossRef]
- Ru, J.; Huo, Y.; Yang, Y. Microbial degradation and valorization of plastic wastes. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Wilkes, R.A.; Aristilde, L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. J. Appl. Microbiol. 2017, 123, 582–593. [Google Scholar] [CrossRef] [Green Version]
- Atlas, R.M.; Bartha, R. Microbial Ecology: Fundamentals and Applications, 4th ed.; Benjamin/Cummings: Menlo Park, CA, USA, 1998. [Google Scholar]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ. Pollut. 2017, 231, 1552–1559. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Screening for polypropylene degradation potential of bacteria isolated from mangrove ecosystems in Peninsular Malaysia. Int. J. Biosci. Biochem. Bioinforma. 2017, 7, 245–251. [Google Scholar]
- Aravinthan, A.; Arkatkar, A.; Juwarkar, A.A.; Doble, M. Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene. Prep. Biochem. Biotechnol. 2016, 46, 109–115. [Google Scholar] [CrossRef]
- Skariyachan, S.; Patil, A.A.; Shankar, A.; Manjunath, M.; Bachappanavar, N.; Kiran, S. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym. Degrad. Stab. 2018, 149, 52–68. [Google Scholar] [CrossRef]
- Pathak, V.M. Navneet Review on the current status of polymer degradation: A microbial approach. Bioresour. Bioprocess. 2017, 4, 15. [Google Scholar] [CrossRef]
- Kumar, A.A.; Karthick, K.; Arumugam, K.P. Biodegradable polymers and its applications. Int. J. Biosci. Biochem. Bioinform. 2011, 1, 173–176. [Google Scholar] [CrossRef] [Green Version]
Strain | Initial Weight (g) | Final Weight (g) | Weight Loss (%) | U | Z | p | r | Removal Rate Constant, K (Day−1) | Half-Life (Days) |
---|---|---|---|---|---|---|---|---|---|
Control | 0.100 | 0.100 | 0.0 | not determined | 0 | ∞ | |||
ADL15 | 0.100 | 0.083 ± 0.0006 | 17.3 | 0.000 | −2.023 | 0.043 | 0.825 | 0.0047 | 147 |
ADL36 | 0.100 | 0.093 ± 0.0006 | 7.3 | 0.0018 | 385 |
Strain (s) | Origin | PP Treatment (s) | Period | SM 1 | T 2 (°C) | Degradation (%) | Reference (s) |
---|---|---|---|---|---|---|---|
Mixed soil culture (consisting of Bacillus flexus strain of [27]) | Palikarne dumping ground, Chennai, India |
| 1 year | n.d 3 | 30–37 |
| [21] |
B. flexus |
| BF 5, BS 6 | 35–37 |
| [27] | ||
Bacillus subtilis |
| ||||||
Pseudomonas azotoformans4 |
| ||||||
Pseudomonas stutzeri | BS |
| |||||
Mixed consortia |
| BF, BS | 28 ± 2 |
| [42] | ||
| |||||||
|
| ||||||
Stenotrophomonas panacihumi PA3-2 | Storage yard, Gyeonggi-do, Korea |
| 90 days | n.d | 37 |
| [20] |
Bacillus cereus | Mangrove ecosystem, Peninsular Malaysia |
| 40 days | n.d | RT 8 | 12 | [41] |
Sporosarcina globispora | 11 | ||||||
Bacillus gottheili |
| 3.6 | [40] | ||||
Bacillus sp. 27 | 4.0 | [28] | |||||
Rhodococcus sp. 36 | 6.4 | ||||||
Rhodococcus rhodochrous ATCC 29672 | ATCC 9 | Extensive pretreatment | 180 days | n.d | 27 | n.d | [29] |
Thermophilic consortia
| Districts in Karnataka state, India |
| 140 days | BF | 50 10 |
| [43] |
Pseudomonas sp. ADL15 | Soils from Victoria Island, Antarctica |
| 40 days | n.d | 10 | 17.3 | This study |
Rhodococcus sp. ADL36 | 7.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, S.; Iruthayam, A.; Abd Shukor, M.Y.; Alias, S.A.; Smykla, J.; Yasid, N.A. Biodeterioration of Untreated Polypropylene Microplastic Particles by Antarctic Bacteria. Polymers 2020, 12, 2616. https://doi.org/10.3390/polym12112616
Habib S, Iruthayam A, Abd Shukor MY, Alias SA, Smykla J, Yasid NA. Biodeterioration of Untreated Polypropylene Microplastic Particles by Antarctic Bacteria. Polymers. 2020; 12(11):2616. https://doi.org/10.3390/polym12112616
Chicago/Turabian StyleHabib, Syahir, Anastasia Iruthayam, Mohd Yunus Abd Shukor, Siti Aisyah Alias, Jerzy Smykla, and Nur Adeela Yasid. 2020. "Biodeterioration of Untreated Polypropylene Microplastic Particles by Antarctic Bacteria" Polymers 12, no. 11: 2616. https://doi.org/10.3390/polym12112616
APA StyleHabib, S., Iruthayam, A., Abd Shukor, M. Y., Alias, S. A., Smykla, J., & Yasid, N. A. (2020). Biodeterioration of Untreated Polypropylene Microplastic Particles by Antarctic Bacteria. Polymers, 12(11), 2616. https://doi.org/10.3390/polym12112616