Beeswax-Modified Textiles: Method of Preparation and Assessment of Antimicrobial Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Beeswax
2.2. Analysis of Compounds in Beeswax Using 109AgNPET SALDI MS
2.2.1. Materials
2.2.2. Sample Preparation and Handling
2.2.3. LDI Mass Spectrometry
2.2.4. MS Data Handling and Compound Identification
2.3. Modification of Textiles with Beeswax and Their Properties
2.3.1. Textiles
2.3.2. Preparation and Application of Beeswax Suspension
2.3.3. Microscopic Analyzes of Fabrics Modified with Beeswax
2.3.4. Mechanical Properties of Fabrics Modified with Beeswax
2.3.5. Optical Properties of Fabrics Modified with Beeswax
2.3.6. Wettability and Hygroscopicity of Fabrics Modified with Beeswax
2.4. Estimation of the Antimicrobial Activity of Textiles Modified with Beeswax
2.4.1. Microorganisms
2.4.2. Assessment of Antimicrobial Activity
2.4.3. Mathematical Calculations
2.5. Statistical Analysis
3. Results and Discussion
3.1. Analysis of the Chemical Composition of Beeswax
3.2. Properties of the Modified Textiles
3.2.1. SEM Analysis of the Distribution of Beeswax in the Fabric Structure
3.2.2. Tensile Strength of Fabrics Modified with Beeswax
3.2.3. Color Changes of Fabrics Caused by Beeswax Modification
3.2.4. Hygroscopic Properties Changes of Fabrics Caused by Beeswax Modification
3.3. Assessment of Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morais, D.S.; Guedes, R.M.; Lopes, M.A. Antimicrobial approaches for textiles: From research to market materials. Materials 2016, 9, 498. [Google Scholar] [CrossRef]
- Gao, Y.; Cranston, R. Recent advances in antimicrobial treatments of textiles. Text. Res. J. 2008, 78, 60–72. [Google Scholar]
- Shahidi, S.; Wiener, J. Antibacterial Agents in Textile Industry. In Antimicrobial Agents; Bobbarala, V., Ed.; InTech: Rijeka, Crotia, 2012; Available online: Https://www.intechopen.com/books/antimicrobial-agents/antibacterial-agents-in-textile-industry (accessed on 30 November 2019).
- McCarthy, B.J. Biocides for use in the textile industry. In Handbook of Biocide and Preservative Use; Rossmoore, H.W., Ed.; Blackie Academic and Professional: London, UK, 1995; pp. 238–253. [Google Scholar]
- Heine, E.; Knops, H.G.; Schaefer, K.; Vangeyte, P.; Moeller, M. Antimicrobial functionalisation of textile materials. In Multifunctional Barriers for Flexible Structure, Textile, Leather and Paper; Duquesne, S., Magniez, C., Camino, G., Eds.; Springer: Berlin, Germany, 2007; pp. 23–37. [Google Scholar]
- Gutarowska, B.; Machnowski, W.; Kowzowicz, Ł. Antimicrobial activity of textiles with selected dyes and finishing agents used in the textile industry. Fibers Polym. 2013, 14, 415–422. [Google Scholar] [CrossRef]
- Fei, Z.; Liu, B.; Zhu, M.; Wang, W.; Yu, D. Antibacterial finishing of cotton fabrics based on thiol-maleimide click chemistry. Cellulose 2018, 25, 3179–3188. [Google Scholar] [CrossRef]
- Szostak-Kot, J. Biodeterioration of textiles. Int. Biodeterior. Biodegrad. 2004, 53, 165. [Google Scholar] [CrossRef]
- Ding, K.; Wang, W.; Yu, D.; Wang, W.; Gao, P.; Liu, B. Facile formation of flexible Ag/AgCl/polydopamine/cotton fabric composite photocatalysts as an efficient visible-light photocatalysts. Appl. Surf. Sci. 2018, 454, 101–111. [Google Scholar] [CrossRef]
- Ding, K.; Yu, D.; Wang, W.; Gao, P.; Liu, B. Fabrication of multiple hierarchical heterojunction Ag@AgBr/BiPO 4 /r-GO with enhanced visible-light-driven photocatalytic activities towards dye degradation. Appl. Surf. Sci. 2018, 445, 39–49. [Google Scholar] [CrossRef]
- Yang, R.; Dong, F.; You, X.; Liu, M.; Shan, Z.; Lishan, Z.; Lishan, B. Facile synthesis and characterization of interface charge transfer heterojunction of Bi2MoO6 modified by Ag/AgCl photosensitive material with enhanced photocatalytic activity. Mater. Lett. 2019, 252, 272. [Google Scholar] [CrossRef]
- Sayed, U.; Sharma, K.; Parte, S. Application of essential oils for finishing of textile substrates. J. Text. Eng. Fash. Technol. 2017, 1, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Agboola, O.O.; Oyedeji, S.; Olowoyo, J.O.; Ajao, A.; Aregbesola, O. Chemical composition and antimicrobial activities of essential oil extracted from Tithonia diversifolia (Asteraceae) flower. Bioresour. Bioprocess 2016, 1, 169–176. [Google Scholar]
- Giampieri, F.; Quiles, J.L.; Orantes-Bermejo, F.J.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Sánchez-González, C.; Llopis, J.; Rivas-García, L.; Afrin, S.; Varela-López, A.; et al. Are by-products from beeswax recycling process a new promising source of bioactive compounds with biomedical properties? Food Chem. Toxicol. 2018, 112, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Fratini, F.; Cilia, G.; Turchi, B.; Felicioli, A. Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pac. J. Trop. Med. 2016, 9, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Reis, M.O.; Olivato, J.B.; Bilck, A.P.; Zanela, J.; Grossmann, M.V.E.; Yamashita, F. Biodegradable trays of thermoplastic starch/poly (lactic acid) coated with beeswax. Ind. Crop. Prod. 2018, 112, 481–487. [Google Scholar] [CrossRef]
- Bonvehi, J.S.; Orantes Bermejo, F.J. Detection of adulterated commercial Spanish beeswax. Food Chem. 2012, 132, 642–648. [Google Scholar] [CrossRef]
- Polat, S.; Uslu, M.K.; Aygün, A.; Certel, M. The effects of the addition of corn husk fibre, kaolin and beeswax on cross-linked corn starch foam. J. Food Eng. 2013, 116, 267–276. [Google Scholar] [CrossRef]
- Zanoschi, C.; Ciobanu, C.; Verbuta, A.; Frincu, D. The efficiency of some natural drugs in the treatment of burns. Rev. Med. Chir. Soc. Med. Nat. Iasi. 1991, 95, 63–65. [Google Scholar]
- Sepehr, S. The most important medicinal uses of honey, and its side effects in the book of the Canon by Avicenna, and in the modern medical literature: A comparative study. J. Apiprod. Apimed. Sci. 2010, 2, 43. [Google Scholar]
- Eteraf-Oskouei, T.; Najafi, M. Traditional and modern uses of natural honey in human diseases: A review. Iran. J. Basic Med. Sci. 2013, 16, 731–742. [Google Scholar]
- McLoone, P.; Warnock, M.; Fyfe, L. Honey: A realistic antimicrobial for disorders of the skin. J. Microbiol. Immunol. Infect. 2016, 49, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Select Committee on GRAS Substances (SCOGS) Opinion: Beeswax (Yellow or White). 1975. Available online: http://wayback.archive-it.org/7993/20171031061654/https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/SCOGS/ucm260869.htm (accessed on 22 January 2020).
- Krell, R. Value-Added Products from Beekeeping; Food & Agriculture Org.: Rome, Italy, 1996. [Google Scholar]
- Kaćaniová, M.; Vuković, N.; Chlebo, R.; Haščík, P.; Rovná, K.; Cubon, J.; Dzugan, M.; Pasternakiewicz, A. The antimicrobial activity of honey, bee pollen loads and beeswax from Slovakia. Arch. Biol. Sci. Bel. 2012, 64, 927–934. [Google Scholar] [CrossRef]
- Ghanem, N.B. The antimicrobial activity of some honey bee products and some Saudi folkloric plant extracts. JKAU Sci. 2011, 23, 47–62. [Google Scholar] [CrossRef]
- Nizioł, J.; Rode, W.; Laskowska, B.; Ruman, T. Novel Monoisotopic 109AgNPET for Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2013, 85, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- ISO. EN ISO 13934-1:2013 Textiles–Tensile properties of fabrics-Part 1: Determination of Maximum Force and Elongation at Maximum Force Using the Strip Method; ISO: Geneva, Switzerland, 2013. [Google Scholar]
- ISO. EN ISO 105-J01 Textiles–Tests for Colour Fastness–Part J01: General Principles for Measurement of Surface Colour; ISO: Geneva, Switzerland, 1997. [Google Scholar]
- Gocławski, J.; Urbaniak-Domagała, W. The measurement of wetting angle by applying an ADSA model of sessile drop on selected textile surfaces. Fibres Text. East. Eur. 2008, 16, 84–88. [Google Scholar]
- AATCC Technical Manual. AATCC Test Method 100-2004. Antibacterial Finishes on Textile Materials: Assessment of; AATCC: North Carolina Triangle, NC, USA, 2008. [Google Scholar]
- Gutarowska, B.; Michalski, A. Antimicrobial activity of filtrating meltblown nonwoven with the addition of silver ions. Fibres. Text. East. Eur. 2009, 17, 23–28. [Google Scholar]
- Majchrzycka, K.; Okrasa, M.; Szulc, J.; Brycki, B.; Gutarowska, B. Time-dependent antimicrobial activity of filtering nonwovens with gemini surfactant-based biocides. Molecules 2017, 22, 1620. [Google Scholar] [CrossRef]
- British Standards. EN 1276:2009 Chemical Disinfectants and Antiseptics. Quantitative Suspension Test for the Evaluation of Bactericidal Activity of Chemical Disinfectants and Antiseptics Used in Food, Industrial, Domestic and Institutional Areas. Test Method and Requirements (Phase 2, Step 1); British Standards: London, UK, 2009. [Google Scholar]
- British Standards. EN 1650:2008 Chemical Disinfectants and Antiseptics. Quantitative Suspension Test for the Evaluation of Fungicidal or Yeasticidal Activity of Chemical Disinfectants and Antiseptics Used in Food, Industrial, Domestic and Institutional Areas. Test Method and Requirements (Phase 2, Step 1); British Standards: London, UK, 2008. [Google Scholar]
- Machnowski, W.; Gutarowska, B.; Perkowski, J.; Wrzosek, H. Effects of gamma radiation on the mechanical properties of and susceptibility to biodegradation of natural fibers. Text. Res. J. 2013, 83, 44–55. [Google Scholar] [CrossRef]
- Aytac, A.; Deniz, V.; Sen, M. Effects of gamma and electron beam irradiation on the properties of calendered cord fabrics. Radiat. Phys. Chem. 2010, 79, 297–300. [Google Scholar] [CrossRef]
- Charlesby, A. Cross-linking and degradation of polymers. Radiat. Phys. Chem. 1981, 18, 59–66. [Google Scholar]
- Sricharussin, W.; Ryo-Aree, W.; Intasen, W. Effect of boric acid and BTCA on tensile strength loss of finished cotton fabrics. Text. Res. J. 2004, 74, 475–480. [Google Scholar] [CrossRef]
- Pinto, C.T.; Pankowski, J.A.; Nano, F.E. The anti-microbial effect of food wrap containing beeswax products. J. Microbiol. Biotech. Food Sci. 2017, 7, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Xiao, H. Dual-functional beeswaxes on enhancing antimicrobial activity and water vapor barrier property of paper. ACS Appl. Mater. Interfaces 2013, 5, 3464–3468. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Xia, Q.; Xiao, H. Cationic polymers with tailored structures for rendering polysaccharide-based materials antimicrobial: An overview. Polymers 2019, 11, 1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Symbol | Raw Material | Mass Per Unit Area (g/m2) | Thickness, (mm) | Porosity (%) | Apparent Density (g/cm3) |
---|---|---|---|---|---|
Fabric 1 | Polyester 40% Cotton 20%Viscose 40% | 280 | 0.88 | 78 | 0.32 |
Fabric 2 | Polyester 100% | 164 | 0.36 | 67 | 0.45 |
Compound Name 1 | Formula | MW 2 | Ion Type | Ion m/z 3 | Δ (ppm) |
---|---|---|---|---|---|
Ethyl propionate | C5H10O2 | 102.0681 | M+H | 103.0754 | 6.4 |
FA(5:1) | C5H8O2 | 100.0524 | M+Na | 123.0416 | 2.0 |
Dimethylcyclohexane | C8H16 | 112.1252 | M+Na | 135.1144 | 8.3 |
Octadienal | C8H12O | 124.0888 | M+Na | 147.0780 | 1.8 |
FA(16:1) | C16H30O2 | 254.2246 | M+K | 293.1877 | 8.7 |
Eicosatetraenoyl amine | C20H33NO | 303.2562 | M+H | 304.2635 | 2.0 |
FA oxo(5:1/5:0/6:0) | C16H26O3 | 266.1882 | M+K | 305.1514 | 1.4 |
4′-Hydroxy-5,7,3′-trimethoxyflavan | C18H20O5 | 316.1311 | M+H | 317.1384 | 2.6 |
SP (3:0) sphingatrienine | C18H33NO2 | 295.2511 | M+K | 334.2140 | 3.9 |
FA hydroxy(18:1) 9-hydroxyoctadecenoic acid | C18H34O3 | 298.2508 | M+K | 337.2140 | 4.0 |
FA(16:1) | C16H30O2 | 254.2246 | M+109Ag | 363.1288 | 6.8 |
Ethyl tetradecanoate | C16H32O2 | 256.2402 | M+109Ag | 365.1444 | 0.2 |
PC(7:0) 1-heptanoyl-sn-glycero-3-phosphocholine | C15H32NO7P | 369.1916 | M+Na | 392.1809 | 4.2 |
ST(5:0/2:0) 9,10-seco-5,7,10(19),16,23-cholestapentaene-3,25-diol | C24H44O3 | 380.329 | M+K | 419.2922 | 2.8 |
octacosaoctaenoic acid | C28H40O2 | 408.3028 | M+K | 447.2660 | 2.0 |
FA hydroxy,oxo(2:0) 9S,15S-dihydroxy-11-oxo-5Z,13E-prostadienoic acid 2-glyceryl ester | C27H38O3 | 410.2821 | M+K | 449.2453 | 5.4 |
Fv hydroxy,dimethoxy(9:1) 7,4′-Dihydroxy-8-lavandulyl-5,2′-dimethoxyflavanone | C27H32O6 | 452.2199 | M+H | 453.2272 | 6.0 |
PE (16:2) 1-hexadecyl-sn-glycero-3-phosphoethanolamine | C21H46NO6P | 439.3063 | M+K | 478.2694 | 4.1 |
FA (26:0) hexacosenoic acid | C26H50O2 | 394.3811 | M+109Ag | 503.2853 | 6.5 |
PA(12:0/12:0) | C27H53O8P | 536.3478 | M+Na | 559.3370 | 7.8 |
3-Hexaprenyl-4-hydroxybenzoic acid | C37H54O3 | 546.4073 | M+Na | 569.3965 | 8.8 |
PC (24:0) 1-tetracosanoyl-sn-glycero-3-phosphocholine | C32H66NO7P | 607.4577 | M+H | 608.4650 | 9.3 |
FA (26:0/2:0) 1-(O-alpha-d-glucopyranosyl)-hexacosanediol | C32H64O8 | 576.4601 | M+K | 615.4233 | 1.3 |
PA(16:0/14:0) | C33H65O8P | 620.4417 | M+Na | 643.4309 | 6.0 |
Cholest-5-en-3β-yl (7Z-hexadecenoate) | C43H74O2 | 622.5689 | M+Na | 645.5581 | 5.7 |
GL(8:0/8:0) 1-(8-(3)-ladderane-octanyl)-2-(8-(3)-ladderane-octanyl)-sn-glycerol | C43H72O3 | 636.5482 | M+K | 675.5113 | 8.3 |
PC(16:0/9:0(CHO)) | C33H64NO9P | 649.4319 | M+K | 688.3950 | 6.9 |
Tetracosanyl palmitoleate | C40H78O2 | 590.6002 | M+109Ag | 699.5044 | 6.5 |
PA(16:0/20:2) | C39H73O8P | 700.5043 | M+H | 701.5116 | 1.3 |
PA(20:0/16:0) | C39H77O8P | 704.5356 | M+Na | 727.5248 | 0.8 |
PG(15:0/18:3) | C39H71O10P | 730.4785 | M+H | 731.4858 | 4.4 |
PG(15:1/18:1) | C39H73O10P | 732.4941 | M+H | 733.5014 | 0.8 |
PA(18:3/22:1) | C43H77O8P | 752.5356 | M+H | 753.5429 | 1.3 |
TG(12:0/12:0/18:3)(iso3) | C45H80O6 | 716.5955 | M+K | 755.5587 | 1.0 |
SM(d18:0/17:0) | C40H83N2O6P | 718.5989 | M+K | 757.5620 | 1.5 |
PG(20:2/15:1) | C41H75O10P | 758.5098 | M+H | 759.5171 | 6.5 |
MGDG(18:0/18:2) di-(octadecatrienoyl)-3- O-β-d-galactosyl-sn-glycerol | C45H82O10 | 782.5908 | M+H | 783.5981 | 0.1 |
SM(d16:1/24:0) | C45H91N2O6P | 786.6615 | M+H | 787.6688 | 3.6 |
PS(P-16:0/14:1) | C36H68NO9P | 689.4632 | M+109Ag | 798.3674 | 0.1 |
PG(O-16:0/16:0) | C38H77O9P | 708.5305 | M+109Ag | 817.4347 | 5.8 |
3-O-(6′-O-hexadecanoyl-beta-d-glucopyranosyl)-stigmast-5-en-3beta-ol | C51H90O7 | 814.6687 | M+Na | 837.6579 | 5.9 |
3-O-(6′-O-(9Z,12Z-octadecadienoyl)-beta-d-glucopyranosyl)-stigmast-5-en-3beta-ol | C53H90O7 | 838.6687 | M+H | 839.6759 | 3.1 |
CoA(22:1) | C43H76N7O17P3S | 1087.4231 | M+H | 1088.4304 | 9.0 |
Galbeta1-3GalNAcbeta1-4(KDNalpha2-3)Galbeta1-4Glcbeta-Cer(d18:1/20:0) | C73H132N2O31 | 1532.8814 | M+K | 1571.8446 | 0.9 |
Galalpha1-3(Fucalpha1-2)Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glcbeta-Cer(d18:1/18:0) | C88H157N3O42 | 1928.0242 | M+K | 1966.9873 | 4.2 |
Symbol | Raw Material (%) | Beeswax Content in Fabric (%) | Fmax (N) | εbr (%) | Relative Decrease in Fmax Values Caused by Fabric Modification (%) |
---|---|---|---|---|---|
Fabric 1 | Polyester 40 Cotton 20 Viscose 40 | 0 (control) | 360.9 ± 3.8 | 14.8 ± 0.4 | 3.7 |
3.00 | 347.4 ± 3.5 * | 16.4 ± 0.6 * | |||
Fabric 2 | Polyester 100% | 0 (control) | 484.4 ± 5.8 | 54.8 ± 1.3 | 2.4 |
2.25 | 472.7 ± 4.4 * | 57.3 ± 0.8 * |
Symbol | Beeswax Content (%) | L | a | b | ΔL | Δa | Δb | ΔE |
---|---|---|---|---|---|---|---|---|
Fabric 1 | 0 (control) | 84.73 | 1.99 | 12.91 | 1.12 | 0.01 | 0.05 | 1.12 |
3.00 | 85.85 | 2.00 | 12.96 | |||||
Fabric 2 | 0 (control) | 18.67 | 4.37 | 1.09 | −0.42 | 0.15 | 0.06 | 0.45 |
2.25 | 18.25 | 4.52 | 1.16 |
Symbol | Beeswax Content (%) | WCA (°) | H (%) at RH 65% | H (%) at RH 100% |
---|---|---|---|---|
Fabric 1 | 0 (control) | 0 * | 6.8 ± 0.2 | 16.5 ± 0.5 |
3.00 | 129.4 ± 3.3 | 5.0 ± 0.3 | 13.4 ± 0.7 | |
Fabric 2 | 0 (control) | 0 * | 0.5 ± 0.1 | 2.1 ± 0.2 |
2.25 | 112.2 ± 4.1 | 0.6 ± 0.1 | 2.0 ± 0.2 |
Microorganism | Survival Rate (%) | Biostatic Activity | Biocidal Activity | ||||
---|---|---|---|---|---|---|---|
Fabric 1 | Fabric 2 | Fabric 1 | Fabric 2 | Fabric 1 | Fabric 2 | ||
Bacteria | Escherichia coli | 653.3 | 484.5 | −0.3 | 0.04 | −0.7 | −0.76 |
Bacillus subtilis | 677.4 | 297.3 | −0.02 | 1.55 | −0.9 | −0.23 | |
Staphylococcus aureus | 56.2 | 469.4 | 0.44 | 0.07 | −0.7 | −0.46 | |
Fungi | Candida albicans | 166.2 | 272.7 | 0.10 | −0.09 | −0.28 | −0.44 |
Aspergillus niger | 11.3 | 7.6 | 0.07 | 0.51 | 1.05 | 1.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szulc, J.; Machnowski, W.; Kowalska, S.; Jachowicz, A.; Ruman, T.; Steglińska, A.; Gutarowska, B. Beeswax-Modified Textiles: Method of Preparation and Assessment of Antimicrobial Properties. Polymers 2020, 12, 344. https://doi.org/10.3390/polym12020344
Szulc J, Machnowski W, Kowalska S, Jachowicz A, Ruman T, Steglińska A, Gutarowska B. Beeswax-Modified Textiles: Method of Preparation and Assessment of Antimicrobial Properties. Polymers. 2020; 12(2):344. https://doi.org/10.3390/polym12020344
Chicago/Turabian StyleSzulc, Justyna, Waldemar Machnowski, Stanisława Kowalska, Anita Jachowicz, Tomasz Ruman, Aleksandra Steglińska, and Beata Gutarowska. 2020. "Beeswax-Modified Textiles: Method of Preparation and Assessment of Antimicrobial Properties" Polymers 12, no. 2: 344. https://doi.org/10.3390/polym12020344
APA StyleSzulc, J., Machnowski, W., Kowalska, S., Jachowicz, A., Ruman, T., Steglińska, A., & Gutarowska, B. (2020). Beeswax-Modified Textiles: Method of Preparation and Assessment of Antimicrobial Properties. Polymers, 12(2), 344. https://doi.org/10.3390/polym12020344