Elevated Photovoltaic Performance in Medium Bandgap Copolymers Composed of Indacenodi-thieno[3,2-b]thiophene and Benzothiadiazole Subunits by Modulating the π-Bridge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization
2.2. Materials
2.3. Polymer Synthesis
2.3.1. Synthesis of Poly[6,6,12,12-tetra(4-hexylphenyl)indacenodithieno[3,2-b]thiophene-2,8-diyl-alt-4,7-bis-(4-octylthien-2-yl)benzo[c][1,2,5]thiadiazole-5,5′-diyl] (PIDTT-DTBT)
2.3.2. Synthesis of Poly[6,6,12,12-tetra(4-hexylphenyl)indacenodithieno[3,2-b]thiophene-2,8-diyl-co-7-(4-octylthien-2-yl)benzo[c][1,2,5]thiadiazole-4,5′-diyl] (PIDTT-TBT)
2.3.3. Synthesis of Poly[6,6,12,12-tetra(4-hexylphenyl)indacenodithieno[3,2-b]thiophene-2,8-diyl-co-7-(4-octylthien-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole-4,5′-diyl] (PIDTT-TFBT)
2.4. Fabrication and Characterization of PSCs
2.5. Hole-Only Device Fabrication and Measurement
3. Results and Discussion
3.1. Molecular Design, Synthesis, and Characterization
3.2. Optical Property
3.3. Photostability Property
3.4. X-ray Diffraction (XRD) Analysis
3.5. Electrochemical Property
3.6. Theoretical Calculation
3.7. Photovoltaic Properties
3.8. Charge Mobilities
3.9. Film Morphology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, P.; Zhan, X. Stability of organic solar cells: Challenges and strategies. Chem. Soc. Rev. 2016, 45, 2544–2582. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Feng, Y.; Fu, J.; Gao, J.; Singh, R.; Kumar, M.; Kim, M.; Tang, H.; Lu, S.; Zhang, W.; et al. Energetic disorder and activation energy in efficient ternary organic solar cells with nonfullerene acceptor Eh-IDTBR as the third component. Sol. RRL 2019, 1900403. [Google Scholar] [CrossRef]
- Li, Y. Molecular design of photovoltaic materials for polymer solar cells: Toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 2014, 5, 5293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Liang, Z.; Wang, Y.; Li, H.; Tong, J.; Bao, X.; Xia, Y. Enhanced efficiency of polymer solar cells through synergistic optimization of mobility and tuning donor alloys by adding high-mobility conjugated polymers. J. Mater. Chem. C 2018, 6, 11015–11022. [Google Scholar] [CrossRef]
- Wang, X.; Dou, K.; Shahid, B.; Liu, Z.; Li, Y.; Sun, M.; Zheng, N.; Bao, X.; Yang, R. Terpolymer strategy toward high-efficiency polymer solar cells: Integrating symmetric benzodithiophene and asymmetrical thieno[2,3-f]benzofuran segments. Chem. Mater. 2019, 31, 6163–6173. [Google Scholar] [CrossRef]
- Wang, X.; Du, Z.; Dou, K.; Jiang, H.; Gao, C.; Han, L.; Yang, R. A maverick asymmetrical backbone with distinct flanked twist angles modulating the molecular aggregation and crystallinity for high performance nonfullerene solar cells. Adv. Energy Mater. 2019, 9, 1802530. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 15027. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Aldrich, T.J.; Matta, M.; Zhu, W.; Swick, S.M.; Stern, C.L.; Schatz, G.C.; Facchetti, A.; Melkonyan, F.S.; Marks, T.J. Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response. J. Am. Chem. Soc. 2019, 141, 3274–3287. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Liang, Z.; Wang, N.; Tong, J.; Yang, C.; Bao, X.; Xia, Y. Enhanced organic photovoltaic performance through modulating vertical composition distribution and promoting crystallinity of the photoactive layer by diphenyl sulfide additives. ACS Appl. Mater. Interfaces 2019, 11, 7022–7029. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhan, L.; Sun, C.; Zhu, H.; Zhou, G.; Yang, W.; Shi, M.; Li, C.-Z.; Hou, J.; Li, Y.; et al. Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets. J. Am. Chem. Soc. 2019, 141, 3073–3082. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Tong, J.; Li, H.; Wang, Y.; Wang, N.; Li, J.; Yang, C.; Xia, Y. The comprehensive utilization of the synergistic effect of fullerene and non-fullerene acceptors to achieve highly efficient polymer solar cells. J. Mater. Chem. A 2019, 7, 15841–15850. [Google Scholar] [CrossRef]
- Stoltzfus, D.M.; Donaghey, J.E.; Armin, A.; Shaw, P.E.; Burn, P.L.; Meredith, P. Charge generation pathways in organic solar cells: Assessing the contribution from the electron acceptor. Chem. Rev. 2016, 116, 12920–12955. [Google Scholar] [CrossRef]
- Li, X.; Liang, Z.; Wang, H.; Qiao, S.; Liu, Z.; Jiang, H.; Chen, W.; Yang, R. Fluorinated D1(0.5)‒A‒D2(0.5)‒A model terpolymer: Ultrafast charge separation kinetics and electron transfer at fluorinated D/A interface for power conversion. J. Mater. Chem. A 2019. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Z.; Qin, J.; Tong, J.; Guo, P.; Cao, X.; Li, J.; Xia, Y. An alcohol-soluble polymer electron transport layer based on perylene diimide derivatives for polymer solar cells. IEEE J. Photovolt. 2019, 9, 1678–1685. [Google Scholar] [CrossRef]
- Yao, H.; Cui, Y.; Qian, D.; Ponseca, C.S., Jr.; Honarfar, A.; Xu, Y.; Xin, Z.; Chen, J.; Hong, L.; Gao, B.; et al. 14.7% Efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference. J. Am. Chem. Soc. 2019, 141, 7743–7750. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F.; Tong, J.; Zhang, M.; Guo, P.; Li, J.; Xia, Y.; Wang, C.; Wu, H. Systematically investigating the influence of inserting alkylthiophene spacers on the aggregation, photo-stability and optoelectronic properties of copolymers from dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene and benzothiadiazole derivatives. Polym. Chem. 2019, 10, 972–982. [Google Scholar] [CrossRef]
- Zhang, Z.-G.; Wang, J. Structures and properties of conjugated donor-acceptor copolymers for solar cell applications. J. Mater. Chem. 2012, 22, 4178–4187. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, L.; You, W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 2012, 45, 607–632. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Lee, J.Y.; Heo, J.; Lim, B.; Kim, J.Y. Highly efficient polymer solar cells with a thienopyrroledione and benzodithiophene containing planar random copolymer. Polym. Chem. 2018, 9, 1216–1222. [Google Scholar] [CrossRef]
- Bibi, S.; Jia, R.; Zhang, H.-X.; Bai, F.-Q. Effect of different topological structures (D-π-D and D-π-A-π-D) on the optoelectronic properties of benzo[2,1-b:3,4-b′]dithiophene based donor molecules toward organic solar cells. Sol. Energy 2019, 186, 311–322. [Google Scholar] [CrossRef]
- Busireddy, M.R.; Chakali, M.; Reddy, G.R.; Chereddy, N.R.; Shanigaram, B.; Kotamarthi, B.; Sharma, G.D.; Rao, V.J. Influence of the backbone structure of the donor material and device processing conditions on the photovoltaic properties of small molecular BHJSCs. Sol. Energy 2019, 186, 84–93. [Google Scholar] [CrossRef]
- Tong, J.; An, L.; Lv, J.; Guo, P.; Wang, X.; Yang, C.; Xia, Y. Enhanced photovoltaic performance in D-π-A copolymers containing triisopropylsilylethynyl-substituted dithienobenzodithiophene by modulating the electron-deficient units. Polymers 2019, 11, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Hu, X.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c′]bis[1,2,5]thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 2011, 133, 9638–9641. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Luo, G.; Su, Q.; Li, J.; Zhang, P.; Tong, J.; Yang, C.; Xia, Y.; Wu, H. Boosting up performance of inverted photovoltaic cells from bis(alkylthien-2-yl)dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4′,5′-b′]dithiophene-based copolymers by advantageous vertical phase separation. ACS Appl. Mater. Interfaces 2017, 9, 10937–10945. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater. 2015, 27, 4655–4660. [Google Scholar] [CrossRef]
- Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 2017, 139, 7148–7151. [Google Scholar] [CrossRef]
- Bin, H.; Zhang, Z.-G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 2016, 138, 4657–4664. [Google Scholar] [CrossRef]
- Xu, T.; Yu, L. How to design low bandgap polymers for highly efficient organic solar cells. Mater. Today 2014, 17, 11–15. [Google Scholar] [CrossRef]
- Huo, L.; Liu, T.; Sun, X.; Cai, Y.; Heeger, A.J.; Sun, Y. Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%. Adv. Mater. 2015, 27, 2938–2944. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Hu, X.; Duan, C.; Liu, P.; Liu, S.; Lan, L.; Chen, D.; Ying, L.; Su, S.; Gong, X.; et al. A series of new medium-bandgap conjugated polymers based on naphtho[1,2-c:5,6-c]bis(2-octyl[1,2,3]tri-azole) for high-performance polymer solar cells. Adv. Mater. 2013, 25, 3683–3688. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Uddin, M.A.; Tang, Y.; Wang, Y.; Wang, Y.; Su, H.; Gao, R.; Chen, Z.-K.; Dai, J.; Woo, H.Y.; et al. Quinoxaline-based wide band gap polymers for efficient nonfullerene organic solar cells with large open-circuit voltages. ACS Appl. Mater. Interfaces 2018, 102, 723235–723246. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Tong, J.; Yang, C.; Zhao, X.; Wang, X.; Xia, Y. Impact of alkyl side chain on photostability and optoelectronic properties of indacenodithieno[3,2-b]thiophene-alt-naphtho[1,2-c:5,6-c′]bis[1,2,5]thiadiazole medium bandgap copolymers. Polym. Int. 2020, 69, 192–205. [Google Scholar] [CrossRef]
- Son, H.; Lu, L.; Chen, W.; Xu, T.; Zheng, T.; Carsten, B.; Strzalka, J.; Darling, S.; Chen, L.; Yu, L. Synthesis and photovoltaic effect in dithieno[2,3-d:2′,3′-d′]benzo[1,2-b: 4,5-b′]dithiophene-based conjugated polymers. Adv. Mater. 2013, 25, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, K.; Yip, H.-L.; Ding, F.-Z.; Xu, Y.-X.; Li, X.; Chen, Y.; Jen, A.K.-Y. Eleven-membered fused-ring low band-gap polymer with enhanced charge carrier mobility and photovoltaic performance. Adv. Funct. Mater. 2014, 24, 3631–3638. [Google Scholar] [CrossRef]
- Liang, C.; Wang, H. Indacenodithiophene-based D-A conjugated polymers for application in polymer solar cells. Org. Electron. 2017, 50, 443–457. [Google Scholar] [CrossRef]
- Sun, Y.; Chien, S.-C.; Yip, H.-L.; Zhang, Y.; Chen, K.-S.; Zeigler, D.F.; Chen, F.-C.; Lin, B.; Jen, A.K.-Y. High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo[3,4-c]-pyridine units for thin film transistor and photovoltaic applications. J. Mater. Chem. 2011, 21, 13247–13255. [Google Scholar] [CrossRef]
- Chang, H.-H.; Tsai, C.-E.; Lai, Y.-Y.; Liang, W.-W.; Hsu, S.-L.; Hsu, C.-S.; Cheng, Y.-J. A new pentacyclic indacenodiselenophene arene and its donor-acceptor copolymers for solution-processable polymer solar cells and transistors: Synthesis, characterization, and investigation of alkyl/alkoxy side-chain effect. Macromolecules 2013, 46, 7715–7726. [Google Scholar] [CrossRef]
- Zhai, W.; Zhou, E. Progress of organic photovoltaic materials based on indacenodithiophene and its derivatives. Chin. J. Org. Chem. 2016, 36, 2786–2812. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.-X.; Chueh, C.-C.; Yip, H.-L.; Ding, F.-Z.; Li, Y.-X.; Li, C.-Z.; Li, X.; Chen, W.-C.; Jen, A.K.-Y. Improved charge transport and absorption coefficient in indacenodithieno[3,2-b]thiophene-based ladder-type polymer leading to highly efficient polymer solar cells. Adv. Mater. 2012, 24, 6356–6361. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cai, P.; Lu, Y.; Choon, N.S.; Chen, J.; Ong, B.S.; Hu, X. Synthesis of a novel low-bandgap polymer based on a ladder-type heptacyclic arene consisting of outer thieno[3,2-b]thiophene units for efficient photovoltaic application. Macromol. Rapid Commun. 2013, 34, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Intemann, J.J.; Yao, K.; Li, Y.-X.; Yip, H.-L.; Xu, Y.-X.; Liang, P.-W.; Chueh, C.-C.; Ding, F.-Z.; Yang, X.; Li, X.; et al. Highly efficient inverted organic solar cells through material and interfacial engineering of indacenodithieno[3,2-b]thiophene-based polymers and devices. Adv. Funct. Mater. 2014, 24, 1465–1473. [Google Scholar] [CrossRef]
- Wang, M.; Hu, X.; Liu, L.; Duan, C.; Liu, P.; Ying, L.; Huang, F.; Cao, Y. Design and synthesis of copolymers of indacenodithiophene and naphtho[1,2-c:5,6-c]bis(1,2,5-thiadiazole) for polymer solar cells. Macromolecules 2013, 46, 3950–3958. [Google Scholar] [CrossRef]
- Xu, X.; Li, Z.; Bäcke, O.; Bini, K.; James, D.I.; Olsson, E.; Andersson, M.R.; Wang, E. Effects of side chain isomerism on the physical and photovoltaic properties of indacenodithieno[3,2-b]thiophene-quinoxaline copolymers: Toward a side chain design for enhanced photovoltaic performance. J. Mater. Chem. A 2014, 2, 18988–18997. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhao, Y.; Tang, W.; Zhang, Z.-G.; Fu, Q.; Li, Y. High open-circuit voltage polymer solar cells based on D-A copolymer of indacenodithiophene and fluorine-substituted benzotriazole. Org. Electron. 2004, 15, 818–823. [Google Scholar] [CrossRef]
- Cai, P.; Xu, X.; Sun, J.; Chen, J.; Cao, Y. Effects of including electron-withdrawing atoms on the physical and photovoltaic properties of indacenodithieno[3,2-b]thiophene-based donor-acceptor polymers: Towards an acceptor design for efficient polymer solar cells. RSC Adv. 2017, 7, 20440–20450. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Zhang, X.; Xue, X.; Wei, D.; Huo, L.; Sun, Y. High-performance wide-bandgap copolymers based on indacenodithiophene and indacenodithieno[3,2-b]thiophene units. J. Mater. Chem. C 2017, 5, 7777–7783. [Google Scholar] [CrossRef]
- Lee, W.; Jung, J.W. A wide band gap polymer based on indacenodithieno[3,2-b]thiophene for high performance bulk heterojunction polymer solar cells. J. Mater. Chem. A 2017, 5, 712–719. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Chen, S.; Guo, X.; Zhang, M.; Li, X.; Li, Y.; Wang, H. Effects of π-conjugated bridges on photovoltaic properties of donor-π-acceptor conjugated copolymers. Macromolecules 2012, 45, 1208–1216. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, M.; Huo, L.; Xu, F.; Wu, Y.; Hou, J. Design, synthesis and photovoltaic properties of a new D-π-A polymer with extended π-bridge units. J. Mater. Chem. 2012, 22, 21024–21031. [Google Scholar] [CrossRef]
- Xu, Y.-X.; Chueh, C.-C.; Yip, H.-L.; Chang, C.-Y.; Liang, P.-W.; Intemann, J.J.; Chen, W.-C.; Jen, A.K.-Y. Indacenodithieno[3,2-b]thiophene-based broad bandgap polymers for high efficiency polymer solar cells. Polym. Chem. 2013, 4, 5220–5223. [Google Scholar] [CrossRef]
- Gedefaw, D.; Tessarolo, M.; Zhuang, W.; Kroon, R.; Wang, E.; Bolognesi, M.; Seri, M.; Muccini, M.; Andersson, M.R. Conjugated polymers based on benzodithiophene and fluorinated quinoxaline for bulk heterojunction solar cells: Thiophene versus thieno[3,2-b]thiophene as π-conjugated spacers. Polym. Chem. 2014, 5, 2083–2093. [Google Scholar] [CrossRef]
- Zuo, G.; Li, Z.; Zhang, M.; Guo, X.; Wu, Y.; Zhang, S.; Peng, B.; Wei, W.; Hou, J. Influence of the backbone conformation of conjugated polymers on morphology and photovoltaic properties. Polym. Chem. 2014, 5, 1976–1981. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, J.B.; Shin, S.A.; Hyun, M.H.; Hwang, D.-H. Low-bandgap copolymers consisting of 2,1,3-benzoselenadiazole and carbazole derivatives with thiophene or selenophene π-bridges. Polymer 2014, 55, 3605–3613. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, J.B.; Xu, F.; Kim, D.; Kwak, J.; Grimsdaled, A.C.; Hwang, D.-H. Effect of π-conjugated bridges of TPD-based medium bandgap conjugated copolymers for efficient tandem organic photovoltaic cells. Energy Environ. Sci. 2014, 7, 4118–4131. [Google Scholar] [CrossRef]
- Zhou, P.; Dang, D.; Fan, J.; Xiong, W.; Yang, C.; Tan, H.; Wang, Y.; Liu, Y.; Zhu, W. Increasing thiophene spacers between thieno[3,2-b]thiophene and benzothiadiazole units in backbone to enhance photovoltaic performance for their 2-D polymers. Dyes Pigments 2015, 112, 99–104. [Google Scholar] [CrossRef]
- Lan, L.; Zhang, G.; Dong, Y.; Ying, L.; Huang, F.; Cao, Y. Novel medium band gap conjugated polymers based on naphtho[1,2-c:5,6-c]bis[1,2,3]triazole for polymer solar cells. Polymer 2015, 67, 40–46. [Google Scholar] [CrossRef]
- Choi, M.-H.; Kim, H.Y.; Lee, E.J.; Moon, D.K. Control of molecular curvature and crystallinity of quinacridonebenzoxadiazole copolymers using different π bridge for polymer solar cells. Polymer 2016, 91, 162–173. [Google Scholar] [CrossRef]
- Wang, X.; Tang, A.; Chen, F.; Zhou, E. The effect of conjugated π-bridge and fluorination on the properties of asymmetric-building-block containing polymers (ABC polymers) based on dithienopyran donor and benzothiadiazole acceptors. Polym. Chem. 2017, 8, 5396–5406. [Google Scholar] [CrossRef]
- Zhu, D.; Bao, X.; Zhu, Q.; Gu, C.; Qiu, M.; Wen, S.; Wang, J.; Shahid, B.; Yang, R. Thienothiophene-based copolymers for high-performance solar cells, employing different orientations of the thiazole group as a π bridge. Energy Environ. Sci. 2017, 10, 614–620. [Google Scholar] [CrossRef]
- Park, J.; Park, J.B.; Ha, J.-W.; Park, H.J.; Kang, I.-N.; Hwang, D.-H. Efficient organic photovoltaic cells based on thiazolothiazole and benzodithiophene copolymers with π-conjugated bridges. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 1978–1988. [Google Scholar] [CrossRef]
- Zou, Y.; Dong, Y.; Wu, Y.; Yang, H.; Cui, C.; Li, Y. Conjugated polymer donor with alkylthio-thiophene π-bridge for efficient polymer solar cells. Org. Electron. 2018, 63, 289–295. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, H.; Tang, Y.; Wang, J.-Y.; Ma, W.; Zheng, Q. Modulation of bulk heterojunction morphology through small π-bridge changes for polymer solar cells with enhanced performance. J. Mater. Chem. C 2018, 6, 5999–6007. [Google Scholar] [CrossRef]
- Gao, X.; Li, Y.; Yu, L.; Hou, F.; Zhu, T.; Bao, X.; Li, F.; Sun, M.; Yang, R. The regulation of π-bridge of indacenodithiophene-based donor-π-acceptor conjugated polymers toward efficient polymer solar cells. Dyes Pigments 2019, 162, 43–51. [Google Scholar] [CrossRef]
- Ye, L.; Xie, Y.; Weng, K.; Ryu, H.S.; Li, C.; Cai, Y.; Fu, H.; Wei, D.; Woo, H.Y.; Tan, S.; et al. Insertion of chlorine atoms onto π-bridges of conjugated polymer enables improved photovoltaic performance. Nano Energy 2019, 58, 220–226. [Google Scholar] [CrossRef]
- He, R.; Xu, J.; Yang, Y.; Cai, P.; Chen, D.; Ying, L.; Yang, W.; Cao, Y. Dibenzothiophene-S,S-dioxide based medium-band-gap polymers for efficient bulk heterojunction solar cells. Org. Electron. 2014, 15, 2950–2958. [Google Scholar] [CrossRef]
- Price, S.C.; Stuart, A.C.; Yang, L.; Zhou, H.; You, W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J. Am. Chem. Soc. 2011, 133, 4625–4631. [Google Scholar] [CrossRef]
- Stuart, A.C.; Tumbleston, J.R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells. J. Am. Chem. Soc. 2013, 135, 1806–1815. [Google Scholar] [CrossRef]
- Leclerc, N.; Chávez, P.; Ibraikulov, O.A.; Heiser, T.; Lévêque, P. Impact of backbone fluorination on π-conjugated polymers in organic photovoltaic devices: A review. Polymers 2016, 8, 11. [Google Scholar] [CrossRef]
- Xu, X.-P.; Li, Y.; Luo, M.-M.; Peng, Q. Recent progress towards fluorinated copolymers for efficient photovoltaic applications. Chin. Chem. Lett. 2016, 27, 1241–1249. [Google Scholar] [CrossRef]
- Wang, T.; Lau, T.-K.; Lu, X.; Yuan, J.; Feng, L.; Jiang, L.; Deng, W.; Peng, H.; Li, Y.; Zou, Y. A medium bandgap D-A copolymer based on 4-alkyl-3,5-difluorophenyl substituted quinoxaline unit for high performance solar cells. Macromolecules 2018, 51, 2838–2846. [Google Scholar] [CrossRef]
- Rech, J.J.; Yan, L.; Peng, Z.; Dai, S.; Zhan, X.; Ade, H.; You, W. Utilizing difluorinated thiophene units to improve the performance of polymer solar cells. Macromolecules 2019, 52, 6523–6532. [Google Scholar] [CrossRef]
- Kawashima, K.; Fukuhara, T.; Suda, Y.; Suzuki, Y.; Koganezawa, T.; Yoshida, H.; Ohkita, H.; Osaka, I.; Takimiya, K. Implication of fluorine atom on electronic properties, ordering structures, and photovoltaic performance in naphthobisthiadiazole-based semiconducting polymers. J. Am. Chem. Soc. 2016, 138, 10265–10275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, J.; Li, J.; Zhang, P.; Ma, X.; Wang, M.; An, L.; Sun, J.; Guo, P.; Yang, C.; Xia, Y. Naphtho[1,2-c:5,6-c′]-bis[1,2,5]thiadiazole-based conjugated polymers consisting of oligothiophenes for efficient polymer solar cells. Polymer 2017, 121, 183–195. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, N.; Lou, S.J.; Smith, J.; Tice, D.B.; Hennek, J.W.; Ortiz, R.P.; Navarrete, J.T.L.; Li, S.; Strzalka, J.; et al. Polymer solar cells with enhanced fill factors. Nat. Photonics 2013, 7, 825–833. [Google Scholar] [CrossRef]
- Carsten, B.; He, F.; Son, H.J.; Xu, T.; Yu, L. Stille polycondensation for synthesis of functional materials. Chem. Rev. 2011, 111, 1493–1528. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, G.; Zhang, K.; Peng, Q.; Wong, M.S. Temperature-modulated optimization of high-performance polymer solar cells based on benzodithiophene-difluorodialkylthienylbenzothiadiazole copolymers: Aggregation effect. Macromolecules 2019, 52, 4447–4457. [Google Scholar] [CrossRef]
- Han, L.; Hu, T.; Bao, X.; Qiu, M.; Shen, W.; Sun, M.; Chen, W.; Yang, R. Steric minimization towards high planarity and molecular weight for aggregation and photovoltaic studies. J. Mater. Chem. A 2015, 3, 23587–23596. [Google Scholar] [CrossRef]
- Lee, H.S.; Song, H.G.; Jung, H.; Kim, M.H.; Cho, C.; Lee, J.-Y.; Park, S.; Son, H.J.; Yun, H.-J.; Kwon, S.-K.; et al. Effects of backbone planarity and tightly packed alkyl chains in the donor-acceptor polymers for high photostability. Macromolecules 2016, 49, 7844–7856. [Google Scholar] [CrossRef]
- Speller, E.M.; Clarke, A.J.; Luke, J.; Lee, H.K.H.; Durrant, J.R.; Li, N.; Wang, T.; Wong, H.C.; Kim, J.-S.; Tsoi, W.C.; et al. From fullerene acceptors to non-fullerene acceptors: Prospects and challenges in the stability of organic solar cells. J. Mater. Chem. A 2019, 7, 23361–23377. [Google Scholar] [CrossRef]
- Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R.F.; Bässler, H.; Porsch, M.; Daub, J. Efficient two layer leds on a polymer blend basis. Adv. Mater. 1995, 7, 551–554. [Google Scholar] [CrossRef]
- Qi, B.; Wang, J. Open-circuit voltage in organic solar cells. J. Mater. Chem. 2012, 22, 24315–24325. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A. 01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Li, J.; Wang, Y.; Liang, Z.; Qin, J.; Ren, M.; Tong, J.; Yang, C.; Yang, C.; Bao, X.; Xia, Y. Non-toxic green food additive enables efficient polymer solar cells through adjusting phase composition distribution and boosting charge transport. J. Mater. Chem. C 2020. [Google Scholar] [CrossRef]
- Güldal, N.S.; Berlinghof, M.; Kassar, T.; Du, X.; Jiao, X.; Meyer, M.; Ameri, T.; Osvet, A.; Li, N.; Destri, G.; et al. Controlling additive behavior to reveal an alternative morphology formation mechanism in polymer: Fullerene bulk-heterojunctions. J. Mater. Chem. A 2016, 4, 16136–16147. [Google Scholar] [CrossRef] [Green Version]
- Wienk, M.M.; Kroon, J.M.; Verhees, W.J.H.; Knol, J.; Hummelen, J.C.; van Hal, P.A.; Janssen, R.A.J. Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew. Chem. 2003, 115, 3493–3497. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, Y.; Wang, J.; Zhu, D.; Yang, C.; Li, Y.; Yang, C.; Xu, J.; Yang, R. High extinction coefficient thieno[3,4-b]thiophene-based copolymer for efficient fullerene-free solar cells with large current density. Chem. Mater. 2017, 29, 6766–6771. [Google Scholar] [CrossRef]
- Tong, J.; An, L.; Li, J.; Lv, J.; Guo, P.; Li, L.; Zhang, P.; Yang, C.; Xia, Y.; Wang, C. Effects of alkyl side chain length of low bandgap naphtho[1,2-c:5,6-c′]bis[1,2,5]thiadiazole-based copolymers on the optoelectronic properties of polymer solar cells. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 85–95. [Google Scholar] [CrossRef]
- Li, J.; Wang, N.; Wang, Y.; Liang, Z.; Peng, Y.; Yang, C.; Bao, X.; Xia, Y. Efficient inverted organic solar cells with a thin natural biomaterial L-Arginine as electron transport layer. Sol. Energy 2020, 196, 168–176. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Z.; Li, X.; Qin, J.; Ren, M.; Yang, C.; Bao, X.; Xia, Y.; Li, J. Self-doping n-type polymer as a cathode interface layer enables efficient organic solar cells by increasing built-in electric field and boosting interface contact. J. Mater. Chem. C 2019, 7, 11152–11159. [Google Scholar] [CrossRef]
Polymer | Solution | Film | 1 (eV) | φox (V) | φred (V) | EHOMO2 (eV) | ELUMO3 (eV) | 4 (eV) | ||
---|---|---|---|---|---|---|---|---|---|---|
λmax (nm) | λmax (nm) | λsh (nm) | λonset (nm) | |||||||
PIDTT-DTBT | 442, 570 | 445, 576 | − | 692 | 1.79 | 0.59 | –1.22 | –5.28 | –3.47 | 1.81 |
PIDTT-TBT | 431, 602 | 436, 610 | − | 705 | 1.76 | 0.66 | –1.11 | –5.35 | –3.58 | 1.77 |
PIDTT-TFBT | 428, 602 | 432, 620 | 590 | 702 | 1.77 | 0.73 | –1.04 | –5.43 | –3.65 | 1.77 |
Polymer | Model Compound | Molecular Structure | Dihedral Angle (deg) |
---|---|---|---|
PIDTT-DTBT | (IDTT-DTBT) | θ1 = −146.30, θ2 = −172.96, θ3 = −176.93 | |
PIDTT-TBT | (IDTT-BT-T) | θ2 = 179.77, θ3 = 179.28 | |
(IDTT-T-BT) | θ1 = 146.33, θ2 = −170.71 | ||
PIDTT-TBT | (IDTT-FBT-T) | θ2 = 179.94, θ3 = 179.87 | |
(IDTT-T-FBT) | θ1 = 147.93, θ2 = −177.82 |
Active Layer | Ratios/DIO | VOC (V) | JSC (mA cm−2) a | FF (%) | PCE (%) | RSH (Ω m2) b | RS (Ω m2) b |
---|---|---|---|---|---|---|---|
PIDTT-DTBT/PC61BM (1:2) | (1:2)/0% | 0.81 | 5.51 (5.45) | 45.67 | 2.05 | 565 | 43.4 |
PIDTT-TBT/PC71BM | (1:2)/3% | 0.88 | 11.08 (11.00) | 59.60 | 5.84 | 604 | 7.7 |
PIDTT-TFBT/PC61BM (1:2) | (1:2)/3% | 0.95 | 5.95 (5.80) | 51.54 | 2.92 | 536 | 14.9 |
Active Layer | μha (cm2 V−1 s−1) | μeb (cm2 V−1 s−1) | μh/μe |
---|---|---|---|
PIDTT-DTBT:PC61BM = 1:2 | 1.78 × 10−4 | 8.56 × 10−7 | 2074 |
PIDTT-TBT:PC71BM = 1:2 | 7.67 × 10−4 | 4.07 × 10−7 | 1884 |
PIDTT-TFBT:PC61BM = 1:2 | 5.29 × 10−4 | 1.77 × 10−8 | 299 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, L.; Tong, J.; Huang, Y.; Liang, Z.; Li, J.; Yang, C.; Wang, X. Elevated Photovoltaic Performance in Medium Bandgap Copolymers Composed of Indacenodi-thieno[3,2-b]thiophene and Benzothiadiazole Subunits by Modulating the π-Bridge. Polymers 2020, 12, 368. https://doi.org/10.3390/polym12020368
An L, Tong J, Huang Y, Liang Z, Li J, Yang C, Wang X. Elevated Photovoltaic Performance in Medium Bandgap Copolymers Composed of Indacenodi-thieno[3,2-b]thiophene and Benzothiadiazole Subunits by Modulating the π-Bridge. Polymers. 2020; 12(2):368. https://doi.org/10.3390/polym12020368
Chicago/Turabian StyleAn, Lili, Junfeng Tong, Yubo Huang, Zezhou Liang, Jianfeng Li, Chunyan Yang, and Xunchang Wang. 2020. "Elevated Photovoltaic Performance in Medium Bandgap Copolymers Composed of Indacenodi-thieno[3,2-b]thiophene and Benzothiadiazole Subunits by Modulating the π-Bridge" Polymers 12, no. 2: 368. https://doi.org/10.3390/polym12020368
APA StyleAn, L., Tong, J., Huang, Y., Liang, Z., Li, J., Yang, C., & Wang, X. (2020). Elevated Photovoltaic Performance in Medium Bandgap Copolymers Composed of Indacenodi-thieno[3,2-b]thiophene and Benzothiadiazole Subunits by Modulating the π-Bridge. Polymers, 12(2), 368. https://doi.org/10.3390/polym12020368