Poly(ionic liquid)-Modified Metal Organic Framework for Carbon Dioxide Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Monomeric Ionic Liquid (VIm-NH2·HBr)
2.3. Synthesis of Poly(ionic liquid) (PIL-NH2)
2.4. Synthesis of PIL-NH2-Modified Cu3(BTC)2 (Denoted as Cu3(BTC)2-PIL-NH2)
2.5. Characterization
2.6. CO2 Adsorption
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate change 2013: The physical science basis. In Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5); Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Knudsen, J.N.; Jensen, J.N.; Vilhelmsen, P.J.; Biede, O. Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Energy Procedia 2009, 1, 783–790. [Google Scholar] [CrossRef] [Green Version]
- White, C.M.; Strazisar, B.R.; Granite, E.J.; Hoffmann, J.S.; Pennline, H.W. Separation and capture of CO2 from large stationary sources and sequestration in geological formations—Coalbeds and deep saline aquifers. J. Air Waste Manag. Assoc. 2003, 53, 645–715. [Google Scholar] [CrossRef]
- Li, L.; Zhao, N.; Wei, W.; Sun, Y.H. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel 2013, 108, 112–130. [Google Scholar] [CrossRef]
- MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, C.S.; Williams, C.K.; Shah, N.; Fennell, P. An overview of CO2 capture technologies. Energy Environ. Sci. 2010, 3, 1645–1669. [Google Scholar] [CrossRef] [Green Version]
- Dutcher, B.; Fan, M.; Russell, A.G. Amine-based CO2 capture technology development from the beginning of 2013-a review. ACS Appl. Mater. Interfaces 2015, 7, 2137–2148. [Google Scholar] [CrossRef]
- Sharma, S.D.; Azzi, M. A critical review of existing strategies for emission control in the monoethanolamine-based carbon capture process and some recommendations for improved strategies. Fuel 2014, 212, 178–188. [Google Scholar] [CrossRef]
- Rochelle, G.T. Amine scrubbing for CO2 capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef]
- Abdelhamid, A.; Heydari-Gorji, A.; Yang, Y. CO2-induced degradation of amine-containing adsorbents: Reaction products and pathways. J. Am. Chem. Soc. 2012, 134, 13834–13842. [Google Scholar]
- Dahl, K.H.; Helgesen, L. Safety assessment of emissions from amine-based post combustion CO2-capture. Toxicol. Lett. 2012, 211, S122–S123. [Google Scholar] [CrossRef]
- Pera-Titus, M. Porous inorganic membranes for CO2 capture: Present and prospects. Chem. Rev. 2014, 114, 1413–1492. [Google Scholar] [CrossRef]
- Knoefel, C.; Martin, C.; Hornebecq, V.; Llewellyn, P.L. Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy. J. Phys. Chem. C 2009, 113, 12726–12734. [Google Scholar] [CrossRef]
- Vaidhyanathan, R.; Iremonger, S.S.; Shimizu, G.K.H.; Boyd, P.G.; Alavi, S.; Woo, T.K. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 2010, 330, 650–653. [Google Scholar] [CrossRef]
- Qi, G.; Wang, Y.; Estevez, L.; Duan, X.; Anako, N.; Park, A.H.A.; Li, W.; Jones, C.W.; Giannelis, E.P. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy Environ. Sci. 2011, 4, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Sculley, J.P.; Zhou, H.C. Enhancing amine-supported materials for ambient air capture. Angew. Chem. Int. Ed. 2012, 51, 12660–12661. [Google Scholar] [CrossRef]
- Aquino, C.C.; Richner, G.; Kimling, M.C.; Chen, D.; Puxty, G.; Feron, P.H.M.; Caruso, R.A. Amine-functionalized titania-based porous structures for carbon dioxide postcombustion capture. J. Phys. Chem. C 2013, 117, 9747–9757. [Google Scholar] [CrossRef]
- Bali, S.; Leisen, J.; Foo, G.S.; Sievers, C.; Jones, C.W. Aminosilanes grafted to basic alumina as CO2 adsorbents-role of grafting conditions on CO2 adsorption properties. ChemSusChem 2014, 7, 3145–3156. [Google Scholar] [CrossRef]
- Linneen, A.N.; Pfeffer, R.; Lin, Y.S. CO2 adsorption performance for amine grafted particulate silica aerogels. Chem. Eng. J. 2014, 254, 190–197. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, J.; Wang, Q.; Tao, M.; He, Y.; Shi, Y. Carbon dioxide capture with polyethylenimine-functionalized industrial-grade multiwalled carbon nanotubes. Ind. Eng. Chem. Res. 2014, 53, 17468–17475. [Google Scholar] [CrossRef]
- Prenzel, T.; Wilhelm, M.; Rezwan, K. Tailoring amine functionalized hybrid ceramics to control CO2 adsorption. Chem. Eng. J. 2014, 235, 198–206. [Google Scholar] [CrossRef]
- Millward, A.R.; Yaghi, O.M. Metal-organic-framework with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 2005, 127, 17998–17999. [Google Scholar] [CrossRef]
- Furukawa, H.; Ko, N.; Go, Y.N.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, O.; Snurr, O.Q.; O’Keeffe, M.; Kim, J.; et al. Ultrahigh porosity in metal-organic- frameworks. Science 2010, 329, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yao, W.; Lin, J.; Ding, Z.; Wang, X. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem. Int. Ed. 2014, 53, 1034–1038. [Google Scholar] [CrossRef]
- Fracaroli, A.M.; Furukawa, H.; Suzuki, M.; Dodd, M.; Okajima, S.; Gandara, F.; Reimer, J.A.; Yaghi, O.M. Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. J. Am. Chem. Soc. 2014, 136, 8863–8866. [Google Scholar] [CrossRef] [Green Version]
- Lai, L.S.; Yeong, Y.F.; Ani, A.C.; Lau, K.K.; Shariff, A.M. Effect of synthesis parameters on the formation of zeolitic imidazolate framework 8 (ZIF-8) nanoparticles for CO2 adsorption. Part. Sci. Technol. 2014, 32, 520–528. [Google Scholar] [CrossRef]
- Martinez, F.; Sanz, R.; Orcajo, G.; Briones, D.; Yanguez, V. Amino-impregnated MOF materials for CO2 capture at post-combustion conditions. Chem. Eng. Sci. 2016, 142, 55–61. [Google Scholar] [CrossRef]
- Qian, X.; Ren, Q.; Wu, X.; Sun, J.; Wu, H.; Lei, J. Enhanced water stability in Zn-doped zeolitic imidazolate framework (ZIF) for CO2 capture applications. ChemsitrySelect 2018, 3, 657–661. [Google Scholar] [CrossRef]
- Song, X.; Yu, J.; Wei, M.; Li, R.; Pan, X.; Yang, G.; Tang, H. Ionic liquids-functionalized zeolitic imidazolate framework for carbon dioxide adsorption. Materials 2019, 12, 2361. [Google Scholar] [CrossRef] [Green Version]
- Dhakshinamoorthy, I.; Li, Z.; Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev. 2018, 47, 8134–8172. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, I.; Asiri, A.M.; Garcia, H. 2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Adv. Mater. 2019, 31, 201900617. [Google Scholar] [CrossRef]
- Thi, T.V.N.; Luu, C.L.; Hoang, T.C.; Nguyen, T.; Bui, T.H.; Nguyen, P.H.D.; Thi, T.P.P. Synthesis of MOF-199 and application to CO2 adsorption. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 035016. [Google Scholar]
- Demessence, A.; D’Alessandro, D.M.; Foo, M.L.; Long, J.R. Strong CO2 binding in a water-stable, triazolate-bridged metal−organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 2009, 131, 8784–8786. [Google Scholar] [CrossRef]
- Finotello, A.; Bara, J.E.; Camper, D.; Boble, R.D. Room-temperature ionic liquids: Temperature dependence of gas solubility. Ind. Eng. Chem. Res. 2008, 47, 3453–3459. [Google Scholar] [CrossRef]
- Condemarin, R.; Scovazzo, P. Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data. Chem. Eng. J. 2009, 147, 51–57. [Google Scholar] [CrossRef]
- Shannon, M.S.; Tedstone, J.M.; Danielsen, S.P.O.; Hindman, M.S.; Irvin, A.C.; Bara, J.E. Free volume as the basis of gas solubility and selectivity in imidazolium-based ionic liquids. Ind. Eng. Chem. Res. 2012, 51, 5565–5576. [Google Scholar] [CrossRef]
- Gurau, G.; Rodriguez, H.; Kelley, S.P.; Janiczek, P.; Kalb, R.S.; Rogers, R.D. Demonstration of chemisorption of carbon dioxide in 1,3-dialkylimidazolium acetate ionic liquids. Angew. Chem. Int. Ed. 2011, 50, 12024–12026. [Google Scholar] [CrossRef]
- Seo, S.; DeSilva, M.A.; Brennecke, J.F. Physical properties and CO2 reaction pathway of 1-ethyl-3-methylimidazolium ionic liquids with aprotic heterocyclic anions. J. Phys. Chem. B 2014, 118, 14870–14879. [Google Scholar] [CrossRef]
- Gutowski, K.E.; Maginn, E.J. Amine-functionalized task-specific ionic liquids: A mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation. J. Am. Chem. Soc. 2008, 130, 14690–14704. [Google Scholar] [CrossRef]
- Tang, J.; Tang, H.; Sun, W.; Radosz, M.; Shen, Y. Poly(ionic liquid)s as new materials for CO2 absorption. J. Polym. Sci. A Polym. Chem. 2005, 43, 5477–5489. [Google Scholar] [CrossRef]
- Magalhaes, T.O.; Aquino, A.S.; Dalla Vecchia, F.; Bernard, F.L.; Seferin, M.; Menezes, S.C.; Ligabue, R.; Einloft, S. Syntheses and characterization of new poly(ionic liquid)s designed for CO2 capture. RSC Adv. 2014, 4, 18164–18170. [Google Scholar] [CrossRef]
- Yuan, J.; Fan, M.; Zhang, F.; Xu, Y.; Tang, H.; Huang, C.; Zhang, H. Amine-functionalized poly(ionic liquid) brushes for carbon dioxide adsorption. Chem. Eng. J. 2017, 316, 903–910. [Google Scholar] [CrossRef]
- Fang, W.; Luo, Z.; Jiang, J. CO2 capture in poly(ionic liquid) membranes: Atomistic insight into the role of anions. Phys. Chem. Chem. Phys. 2013, 15, 651–658. [Google Scholar] [CrossRef]
- Li, N.; Qu, R.; Han, X.; Lin, W.; Zhang, H.; Zhang, Z.J. The counterion effect of imidazolium-type poly(ionic liquid) brushes on carbon dioxide adsorption. ChemPlusChem 2019, 84, 281–288. [Google Scholar] [CrossRef]
Samples | Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Pore Size (nm) |
---|---|---|---|
Cu3(BTC)2 | 1352 | 0.60 | 1.8 |
Cu3(BTC)2-PIL-NH2 | 107 | 0.12 | 4.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Yu, J.; Peng, S.; Sheng, K.; Zhang, H. Poly(ionic liquid)-Modified Metal Organic Framework for Carbon Dioxide Adsorption. Polymers 2020, 12, 370. https://doi.org/10.3390/polym12020370
Yang G, Yu J, Peng S, Sheng K, Zhang H. Poly(ionic liquid)-Modified Metal Organic Framework for Carbon Dioxide Adsorption. Polymers. 2020; 12(2):370. https://doi.org/10.3390/polym12020370
Chicago/Turabian StyleYang, Guangyuan, Jialin Yu, Sanwen Peng, Kuang Sheng, and Haining Zhang. 2020. "Poly(ionic liquid)-Modified Metal Organic Framework for Carbon Dioxide Adsorption" Polymers 12, no. 2: 370. https://doi.org/10.3390/polym12020370
APA StyleYang, G., Yu, J., Peng, S., Sheng, K., & Zhang, H. (2020). Poly(ionic liquid)-Modified Metal Organic Framework for Carbon Dioxide Adsorption. Polymers, 12(2), 370. https://doi.org/10.3390/polym12020370