Synthesis of Superheat-Resistant Polyimides with Enhanced Dielectric Constant by Introduction of Cu(ΙΙ)-Coordination
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Measurements
2.3. Synthesis of Monomers
2.3.1. Synthesis of 5-nitro-2-(5-nitropyridin-2-yl)-1-methyl-benzimidazole (3)
2.3.2. Synthesis of 5-amine-2-(5-aminopyridin-2-yl)-1-methyl-benzimidazole (PyMePABZ)
2.4. Preparation of Polymers
3. Results and Discussion
3.1. Molecular Structure and Polymerization Characterization
3.2. Cu(II)-Coordination of PIs
3.3. Physical Properties of PIs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Palneedi, H.; Peddigari, M.G.; Hwang, T.; Jeong, D.Y.; Ryu, J. High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook. Adv. Funct. Mater. 2018, 28, 1803665. [Google Scholar] [CrossRef]
- Dang, Z.M.; Yuan, J.K.; Zha, J.W.; Zhou, T.; Li, S.T.; Hu, G.H. Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 2012, 57, 660–723. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Chen, Q.; Chu, B.; Zhang, Q. Recent Development of High Energy Density Polymers for Dielectric Capacitors. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1036–1042. [Google Scholar] [CrossRef]
- Pfeiffenberger, N.; Milandou, F.; Niemeyer, M.; Sugawara, T.; Sanner, M.; Mahood, J. High temperature dielectric polyetherimide film development. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 120–126. [Google Scholar] [CrossRef]
- Li, R.; Xiong, C.; Kuang, D.; Dong, L.; Lei, Y.; Yao, J.; Li, L. Polyamide 11/poly (vinylidene fluoride) blends as novel flexible materials for capacitors. Macromol. Rapid Commun. 2008, 29, 1449–1454. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Q. Novel Ferroelectric Polymers for High Energy Density and Low Loss Dielectrics. Macromolecules 2012, 45, 2937–2954. [Google Scholar] [CrossRef]
- Ma, R.; Baldwin, A.F.; Wang, C.; Offenbach, I.; Cakmak, M.; Ramprasad, R.; Sotzing, G.A. Rationally designed polyimides for high-energy density capacitor applications. ACS Appl. Mater. Interfaces 2014, 6, 10445–10451. [Google Scholar] [CrossRef]
- Sroog, C.E. Polyimides. Prog. Polym. Sci. 1991, 16, 561–694. [Google Scholar] [CrossRef]
- Yu, X.; Liang, W.; Cao, J.; Wu, D. Mixed rigid and flexible component design for high-performance polyimide films. Polymers 2017, 9, 451. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Hoshino, Y.; Katsura, N.; Ishii, J. Superheat-resistant polymers with low coefficients of thermal expansion. Polymer 2017, 111, 91–102. [Google Scholar] [CrossRef]
- Volksen, W.; Miller, R.D.; Dubois, G. Low dielectric constant materials. Chem. Rev. 2010, 110, 56–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Mitra, A.; Wang, H.; Huang, L.; Yan, Y. Pure silica zeolite films as low-k dielectrics by spin-on of nanoparticle suspensions. Adv. Mater. 2001, 13, 1463–1466. [Google Scholar] [CrossRef]
- Yue, S.; Wan, B.; Liu, Y.; Zhang, Q. Significantly enhanced dielectric constant and energy storage properties in polyimide/reduced BaTiO3 composite films with excellent thermal stability. RSC Adv. 2019, 9, 7706–7717. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Wu, Q.; Zhao, D.; Ye, W.; Hanif, M.; Hou, H. Flexible PI/BaTiO3 dielectric nanocomposite fabricated by combining electrospinning and electrospraying. Eur. Polym. J. 2013, 49, 2567–2571. [Google Scholar] [CrossRef]
- Peng, X.; Wu, Q.; Jiang, S.; Hanif, M.; Chen, S.; Hou, H. High dielectric constant polyimide derived from 5, 5′-bis[(4-amino)phenoxy]-2,2′-bipyrimidine. J. Appl. Polym. Sci. 2014, 131, 40828. [Google Scholar] [CrossRef]
- Schubert, U.S.; Eschbaumer, C. Macromolecules containing bipyridine and terpyridine metal complexes: Towards metallosupramolecular polymers. Angew. Chem. Int. Ed. 2002, 41, 2892–2926. [Google Scholar] [CrossRef]
- Rao, Y.L.; Chortos, A.; Pfattner, R.; Lissel, F.; Chiu, Y.C.; Feig, V.; He, M. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J. Am. Chem. Soc. 2016, 138, 6020–6027. [Google Scholar] [CrossRef]
- Chang, G.; Wang, C.; Du, M.; Liu, S.; Yang, L. Metal-coordination crosslinked N-polyindoles as recyclable high-performance thermosets and nondestructive detection for their tensile strength and glass transition temperature. Chem. Commun. 2018, 54, 2906–2909. [Google Scholar] [CrossRef]
- Liu, Q.D.; Jia, W.L.; Wang, S. Blue luminescent 2-(2′-Pyridyl) benzimidazole derivative ligands and their orange luminescent mononuclear and polynuclear organoplatinum (II) complexes. Inorg. Chem. 2005, 44, 1332–1343. [Google Scholar] [CrossRef]
- Shavaleev, N.M.; Bell, Z.R.; Easun, T.L.; Rutkaite, R.; Swanson, L.; Ward, M.D. Complexes of substituted derivatives of 2-(2-pyridyl) benzimidazole with Re (I), Ru (II) and Pt (II): Structures, redox and luminescence properties. Dalton Trans. 2004, 21, 3678–3688. [Google Scholar] [CrossRef]
- Serratrice, M.; Cinellu, M.A.; Maiore, L.; Pilo, M.; Zucca, A.; Gabbiani, C.; Messori, L. Synthesis, structural characterization, solution behavior, and in vitro antiproliferative properties of a series of gold complexes with 2-(2′-pyridyl) benzimidazole as ligand: Comparisons of gold (III) versus gold (I) and mononuclear versus binuclear derivatives. Inorg. Chem. 2012, 51, 3161–3171. [Google Scholar] [PubMed]
- Hisano, T.; Ichikawa, M. Acidic Properties of Benzimidazoles and Substituents Effects. I. Correlation between Acid Dissociations and Hydrogen Bondings of Some Benzimidazoles. Chem. Pharm. Bull. 1974, 22, 1923–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarlıgan, S.; Öğretir, C.; Kaynak, B.; Esenoğlu, E. A study on acid-base propertiesand hydrogen bonding of some 2-substituted benzimidazoles in aqueous phase usingsemi-empirical methods. J. Mol. Struct. Theochem. 2002, 586, 9–16. [Google Scholar] [CrossRef]
- Qing, S.; Huang, W.; Yan, D. Synthesis and characterization of thermally stable sulfonated polybenzimidazoles obtained from 3,3′-disulfonyl-4,4′-dicarboxyldiphenylsulfone. J. Polym. Sci. Part A Pol. Chem. 2005, 43, 4363–4372. [Google Scholar] [CrossRef]
- Kuo, S.W.; Lin, C.L.; Chang, F.C. The study of hydrogen bonding and miscibility in poly (vinylpyridines) with phenolic resin. Polymer 2002, 43, 3943–3949. [Google Scholar] [CrossRef]
- Cesteros, L.C.; Meaurio, E.; Katime, I. Miscibility and specific interactions in blends of poly (hydroxy methacrylates) with poly (vinylpyridines). Macromolecules 1993, 26, 2323–2330. [Google Scholar] [CrossRef]
- Xu, Y.K.; Zhan, M.S.; Wang, K. Structure and properties of polyimide films during a far-infrared-induced imidization process. J. Polym. Sci. Part B Pol. Phys. 2004, 42, 2490–2501. [Google Scholar] [CrossRef]
- Diaham, S.; Locatelli, M.L.; Lebey, T.; Malec, D. Thermal imidization optimization of polyimide thin films using Fourier transform infrared spectroscopy and electrical measurements. Thin Solid Films 2011, 519, 1851–1856. [Google Scholar] [CrossRef]
- Avgouropoulos, G.; Ioannides, T. Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method. Appl. Catal. A 2003, 244, 155–167. [Google Scholar] [CrossRef]
- Francisco, M.S.P.; Mastelaro, V.R.; Nascente, P.A.; Florentino, A.O. Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts. J. Phys. Chem. B 2001, 105, 10515–10522. [Google Scholar] [CrossRef]
- Wu, S.; Li, W.; Lin, M.; Burlingame, Q.; Chen, Q.; Payzant, A.; Xiao, K.; Zhang, Q.M. Aromatic Polythiourea Dielectrics with Ultrahigh Breakdown Field Strength, Low Dielectric Loss, and High Electric Energy Density. Adv. Mater. 2013, 25, 1734–1738. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.D.; Arlen, M.J.; Wang, D.H.; Ounaies, Z.; Berry, R.; Tan, L.S.; Garrett, P.H.; Vaia, R.A. Dielectric characteristics of polyimide CP2. Polymer 2010, 51, 3139–3146. [Google Scholar] [CrossRef]
- Chisca, S.; Musteata, V.E.; Sava, I.; Bruma, M. Dielectric Behavior of Some Aromatic Polyimide Films. Eur. Polym. J. 2011, 47, 1186–1197. [Google Scholar] [CrossRef]
- Kim, S.I.; Shin, T.J.; Pyo, S.M.; Moon, J.M.; Ree, M. Structure and properties of rodlike poly (p-phenylene pyromellitimide)s containing short side groups. Polymer 1999, 40, 1603–1610. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, C.; Wang, D.; Dang, G.; Chen, C.; Zhou, H.; Zhao, X. High transparent polyimides containing pyridine and biphenyl units: Synthesis, thermal, mechanical, crystal and optical properties. Polymer 2015, 62, 1–10. [Google Scholar] [CrossRef]
- Rodzeń, K.; Strachota, A.; Ribot, F.; Matějka, L.; Kovářová, J.; Trchová, M.; Šlouf, M. Reactivity of the tin homolog of POSS, butylstannoxane dodecamer, in oxygen-induced crosslinking reactions with an organic polymer matrix: Study of long-time behavior. Polym. Degrad. Stab. 2015, 118, 147–166. [Google Scholar] [CrossRef]
- Sazanov, Y.N.; Florinsky, F.S.; Koton, M.M. Investigation of thermal and thermooxidative degradation of some polyimides containing oxyphenylene groups in the main chain. Eur. Polym. J. 1979, 15, 781–786. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Xia, Q.; Dong, J.; Xu, Q. Synthesis, characterization and properties of polyimides derived from a symmetrical diamine containing bis-benzimidazole rings. Polym. Degrad. Stab. 2012, 97, 987–994. [Google Scholar] [CrossRef]
- Lian, M.; Lu, X.; Lu, Q. Synthesis of Superheat-Resistant Polyimides with High Tg and Low Coefficient of Thermal Expansion by Introduction of Strong Intermolecular Interaction. Macromolecules 2018, 51, 10127–10135. [Google Scholar] [CrossRef]
Sample No. | ηinh (Cu-PAAs) (dL g−1) | Tg a (°C) | T5% b (N2) (°C) | E (GPa) | σ (MPa) | ε (%) | εr (1000 Hz) | Tan δ * 100 (1000 Hz) |
---|---|---|---|---|---|---|---|---|
Neat PI | 0.83 | 395 | 534 | 5.7 | 127 | 7.7 | 3.7 | 0.38 |
20% Gu-PI | 0.85 | 401 | 525 | 5.7 | 137 | 8.2 | 4.5 | 0.62 |
35% Gu-PI | 0.91 | 406 | 512 | 5.8 | 147 | 8.9 | 4.8 | 0.71 |
50% Gu-PI | 1.10 | 414 | 504 | 5.8 | 160 | 9.3 | 5.3 | 0.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, G.; Hu, M.; Zhang, S.; Wang, M.; Chen, C.; Yao, J. Synthesis of Superheat-Resistant Polyimides with Enhanced Dielectric Constant by Introduction of Cu(ΙΙ)-Coordination. Polymers 2020, 12, 442. https://doi.org/10.3390/polym12020442
Qian G, Hu M, Zhang S, Wang M, Chen C, Yao J. Synthesis of Superheat-Resistant Polyimides with Enhanced Dielectric Constant by Introduction of Cu(ΙΙ)-Coordination. Polymers. 2020; 12(2):442. https://doi.org/10.3390/polym12020442
Chicago/Turabian StyleQian, Guangtao, Mengjie Hu, Shangying Zhang, Mengxia Wang, Chunhai Chen, and Jianan Yao. 2020. "Synthesis of Superheat-Resistant Polyimides with Enhanced Dielectric Constant by Introduction of Cu(ΙΙ)-Coordination" Polymers 12, no. 2: 442. https://doi.org/10.3390/polym12020442
APA StyleQian, G., Hu, M., Zhang, S., Wang, M., Chen, C., & Yao, J. (2020). Synthesis of Superheat-Resistant Polyimides with Enhanced Dielectric Constant by Introduction of Cu(ΙΙ)-Coordination. Polymers, 12(2), 442. https://doi.org/10.3390/polym12020442