Comparison and Impact of Different Fiber Debond Techniques on Fiber Reinforced Flexible Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Impregnation Quality of Fiber Bundle Specimens
2.3. Specimen Holder
2.4. FBPO Test
2.5. Single Fiber Pull-Out Test
2.6. Microbond Test
2.7. Optical Observation of Fracture Surfaces
3. Results and Discussion
3.1. Fiber Bundle Pull-Out Test
3.2. Comparison Between Different Test Scales
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Connolly, F.; Walsh, C.J.; Bertoldi, K. Automatic design of fiber-reinforced soft actuators for trajectory matching. Proc. Natl. Acad. Sci. USA 2017, 114, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, T.; Shi, Z.; Shi, Q.; Wang, T.J. Bioinspired bicipital muscle with fiber-constrained dielectric elastomer actuator. Extreme Mech. Lett. 2016, 6, 75–81. [Google Scholar] [CrossRef]
- Zhang, Q.; Wommer, J.; O’Rourke, C.; Teitelman, J.; Tang, Y.; Robison, J.; Lin, G.; Yin, J. Origami and kirigami inspired self-folding for programming three-dimensional shape shifting of polymer sheets with light. Extreme Mech. Lett. 2017, 11, 111–120. [Google Scholar] [CrossRef]
- Koschmieder, M. Verarbeitung und Eigenschaften von Faserverbundkunststoffen mit Elastomermatrix. Ph.D. Theses, Rheinisch-Westfälischen Technischen Hochschule Aachen, Aachen, Germany, 2000. [Google Scholar]
- Zhang, X.; Fan, X.; Yan, C.; Li, H.; Zhu, Y.; Li, X.; Yu, L. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl. Mater. Interfaces 2012, 4, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Kalinka, G.; Neumann, B. Bestimmung von Interface-Festigkeit oder Trennarbeit mit dem Pull-out-Versuch: Kassel, Germany. 2005. Available online: https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/6085 (accessed on 17 February 2020).
- Kim, J.-K.; Mai, Y.-W. Engineered Interfaces in Fiber Reinforced Composites, 1st ed.; Elesvier Science Ltd: Oxford, UK, 1998; pp. 43–93. ISBN 0-08-042695-6. [Google Scholar]
- Zhou, J.; Li, Y.; Li, N.; Hao, X.; Liu, C. Interfacial shear strength of microwave processed carbon fiber/epoxy composites characterized by an improved fiber-bundle pull-out test. Compos. Sci. Technol. 2016, 133, 173–183. [Google Scholar] [CrossRef]
- Piggott, M.R. Why interface testing by single-fibre methods can be misleading. Compos. Sci. Technol. 1997, 57, 965–974. [Google Scholar] [CrossRef]
- Zhandarov, S. Characterization of fiber/matrix interface strength: Applicability of different tests, approaches and parameters. Compos. Sci. Technol. 2005, 65, 149–160. [Google Scholar] [CrossRef]
- Kerans, R.J.; Parthasarathy, T.A. Theoretical Analysis of the Fiber Pullout and Pushout Tests. J. Am. Ceram. Soc. 1991, 74, 1585–1596. [Google Scholar] [CrossRef]
- Penn, L.S.; Bowler, E.R. A new approach to surface energy characterization for adhesive performance prediction. Surf. Interface Anal. 1981, 3, 161–164. [Google Scholar] [CrossRef]
- Desarmot, G.; Favre, J. Advances in pull-out testing and data analysis. Compos. Sci. Technol. 1991, 42, 151–187. [Google Scholar] [CrossRef]
- Hampe, A.; Kalinka, G.; Meretz, S.; Schulz, E. An advanced equipment for single-fibre pull-out test designed to monitor the fracture process. Composites 1995, 26, 40–46. [Google Scholar] [CrossRef]
- Yue, C.Y.; Padmanabhan, K. Interfacial studies on surface modified Kevlar fibre/epoxy matrix composites. Compos. Part B 1999, 30, 205–217. [Google Scholar] [CrossRef]
- Zhamu, A.; Zhong, W.H.; Stone, J.J. Experimental study on adhesion property of UHMWPE fiber/nano-epoxy by fiber bundle pull-out tests. Compos. Sci. Technol. 2006, 66, 2736–2742. [Google Scholar] [CrossRef]
- Palola, S.; Sarlin, E.; Kolahgar Azari, S.; Koutsos, V.; Vuorinen, J. Microwave induced hierarchical nanostructures on aramid fibers and their influence on adhesion properties in a rubber matrix. Appl. Surf. Sci. 2017, 410, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Niroomand, M.; Hejazi, S.M.; Sheikhzadeh, M.; Alirezazadeh, A. Pull-out analysis of laser modified polyamide tire cords through rubber matrix. Eng. Fail. Anal. 2017, 80, 431–443. [Google Scholar] [CrossRef]
- Sørensen, B.F.; Lilholt, H. Fiber pull-out test and single fiber fragmentation test—Analysis and modelling. IOP Conf. Ser. Mater. Sci. Eng. 2016, 139. [Google Scholar] [CrossRef] [Green Version]
- Hatamleh, M.M.; Watts, D.C. Effects of bond primers on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses. J. Prosthodont. 2011, 20, 113–119. [Google Scholar] [CrossRef]
- Brandstetter, J.; Peterlik, H.; Kromp, K.; Weiss, R. A new fibre-bundle pull-out test to determine interface properties of a 2D-woven carbon/carbon composite. Compos. Sci. Technol. 2003, 63, 653–660. [Google Scholar] [CrossRef]
- Schulz, E.; Kalinka, G.; Auersch, W. Effect of transcrystallization in carbon fiber reinforced poly(p -phenylene sulfide) composites on the interfacial shear strength investigated with the single fiber pull-out test. J. Macromol. Sci. Part B 2006, 35, 527–546. [Google Scholar] [CrossRef]
- Domnanovich, A.; Peterlik, H.; Kromp, K. Determination of interface parameters for carbon/carbon composites by the fibre-bundle pull-out test. Compos. Sci. Technol. 1996, 56, 1017–1029. [Google Scholar] [CrossRef]
- Kalinka, G.; Leistner, A.; Hampe, A. Characterisation of the fibre/matrix interface in reinforced polymers by the push-in technique. Compos. Sci. Technol. 1997, 57, 845–851. [Google Scholar] [CrossRef]
- Zarges, J.-C.; Kaufhold, C.; Feldmann, M.; Heim, H.-P. Single fiber pull-out test of regenerated cellulose fibers in polypropylene: An energetic evaluation. Compos. Part A 2018, 105, 19–27. [Google Scholar] [CrossRef]
- Viel, Q.; Esposito, A.; Saiter, J.-M.; Santulli, C.; Turner, J. Interfacial Characterization by Pull-Out Test of Bamboo Fibers Embedded in Poly(Lactic Acid). Fibers 2018, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Muliana, A.; Rajagopal, K.R.; Tscharnuter, D.; Schrittesser, B.; Saccomandi, G. Determining material properties of natural rubber using fewer material moduli in virtue ofa novel constitutive approach for elastic bodies. Rubber Chem. Technol. 2018, 91, 375–389. [Google Scholar] [CrossRef]
- Beter, J.; Schrittesser, B.; Fuchs, P.F. Investigation of adhesion properties in load coupling applications for flexible composites. Mater. Today-Proc. 2020. [Google Scholar] [CrossRef]
- von Essen, M.; Sarlin, E.; Tanhuanpää, O.; Kakkonen, M.; Laurikainen, P.; Hoikkanen, M. Automated high-throughput microbond tester for interfacial shear strength studies. In Proceedings of the SAMPE Europe Conference, Stuttgart, Germany, 13–16 November 2017; pp. 14–16, ISBN 978-90-821727-7-5. [Google Scholar]
- Thomason, J.L.; Yang, L. Temperature dependence of the interfacial shear strength in glass–fibre polypropylene composites. Compos. Sci. Technol. 2011, 71, 1600–1605. [Google Scholar] [CrossRef]
- Zhandarov, S.; Mäder, E. Analysis of a pull-out test with real specimen geometry. Part I: Matrix droplet in the shape of a spherical segment. J. Adhes. Sci. Technol. 2013, 27, 430–465. [Google Scholar] [CrossRef]
- Bartoš, P. Analysis of pull-out tests on fibres embedded in brittle matrices. J. Mater. Sci. 1980, 15, 3122–3128. [Google Scholar] [CrossRef]
Setting | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
embedded length le, mm | 8 | 10 | 12 | ||||||
pull-out speed vpull-out, mm/min | 0.5 | 1.0 | 2.0 | 0.5 | 1.0 | 2.0 | 0.5 | 1.0 | 2.0 |
Fiber-Matrix | FBPO | SFPO | Microbond | |
---|---|---|---|---|
av. max. Force Fmax, (± std. dev.), N | av. max. Force Fmax, (± std. dev.), mN | Slope (k), mN/mm2 | R2 - | |
GF (a)-PDMS | 26.6 ± 4.5 | 11.6 ± 1.4 | 0.01 | 0.8 |
GF (b)-PDMS | 38.2 ± 3.0 | 25.7 ± 1.8 | 0.1 | 0.7 |
GF (a)-PUR | 45.6 ± 3.8 | 48.8 ± 15.0 | 1.4 | 0.8 |
PETF-PDMS | 8.7 ± 1.5 | 19.5 ± 10.5 | 0.2 | 0.8 |
PETF-PUR | 21.3 ± 1.1 | 65.3 ± 15.0 | 1.4 | 0.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beter, J.; Schrittesser, B.; Maroh, B.; Sarlin, E.; Fuchs, P.F.; Pinter, G. Comparison and Impact of Different Fiber Debond Techniques on Fiber Reinforced Flexible Composites. Polymers 2020, 12, 472. https://doi.org/10.3390/polym12020472
Beter J, Schrittesser B, Maroh B, Sarlin E, Fuchs PF, Pinter G. Comparison and Impact of Different Fiber Debond Techniques on Fiber Reinforced Flexible Composites. Polymers. 2020; 12(2):472. https://doi.org/10.3390/polym12020472
Chicago/Turabian StyleBeter, Julia, Bernd Schrittesser, Boris Maroh, Essi Sarlin, Peter Filipp Fuchs, and Gerald Pinter. 2020. "Comparison and Impact of Different Fiber Debond Techniques on Fiber Reinforced Flexible Composites" Polymers 12, no. 2: 472. https://doi.org/10.3390/polym12020472
APA StyleBeter, J., Schrittesser, B., Maroh, B., Sarlin, E., Fuchs, P. F., & Pinter, G. (2020). Comparison and Impact of Different Fiber Debond Techniques on Fiber Reinforced Flexible Composites. Polymers, 12(2), 472. https://doi.org/10.3390/polym12020472