Removal of Boron and Manganese Ions from Wet-Flue Gas Desulfurization Wastewater by Hybrid Chitosan-Zirconium Sorbent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Analysis and Apparatus
2.3. Preparation of the Hybrid Chitosan-Zirconium Hydrogel Beads
2.4. Adsorption and Desorption Methodology
2.4.1. Batch Studies
2.4.2. Column Studies
3. Results and Discussion
3.1. Adsorption Isotherms
3.2. Breakthrough Curves
3.3. Desorption
3.4. Purification of FGD Wastewater
4. Summary
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Bogacki, J.; Marcinowski, P.; Majewski, M.; Zawadzki, J.; Sivakumar, S. Alternative Approach to Current EU BAT Recommendation for Coal-Fired Power Plant Flue Gas Desulfurization Wastewater Treatment. Processes 2018, 6, 229. [Google Scholar] [CrossRef] [Green Version]
- Walendziewski, J. The effect of parameters of wet flue gas desulfurization on its effectiveness. Przemysł Chem. 2015, 1, 145–148. [Google Scholar] [CrossRef]
- Turek, M.; Trojanowska, J.; Litwinowicz, A. Usuwanie boru ze ścieków z mokrego odsiarczania spalin. Energetyka 2018, 1, 46–49. [Google Scholar]
- Kabay, N.; Bryjak, M.; Hilal, N. Boron Separation Processes, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Yazbeck, C.; Kloppmann, W.; Cottier, R.; Sahuquillo, J.; Debotte, G.; Huel, G. Health impact evaluation of boron in drinking water: A geographical risk assessment in Northern France. Environ. Geochem. Health 2005, 27, 419–427. [Google Scholar] [CrossRef]
- Grygo-Szymanko, E.; Tobiasz, A.; Walas, S. Speciation analysis and fractionation of manganese: A review. Trends Anal. Chem. 2016, 80, 112–124. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Guidelines for Water Reuse EPA/600/R-12/618; U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2015, 46, 406–433. [Google Scholar] [CrossRef]
- Smolik, M.; Zolotajkin, M.; Kluczka, J. Distribution of trace amounts of impurities during manganese(II) sulfate crystallization at 20-degrees-c and 2-degrees-c. Pol. J. Chem. 1995, 69, 1322–1327. [Google Scholar]
- Okoniewska, J.; Lach, M.; Kacprzak, M.; Neczaj, E. The removal of manganese, iron and ammonium nitrogen on impregnated activated carbon. Desalination 2007, 206, 251–258. [Google Scholar] [CrossRef]
- Kluczka, J. Reactive Polymers in Mercury Removal from Electrolytic Brine. Sep. Sci. Technol. 2009, 44, 3698–3716. [Google Scholar] [CrossRef]
- Roccaro, P.; Barone, C.; Mancini, G.; Vagliasindi, F. Removal of manganese from water supplies intended for human consumption: A case study. Desalination 2007, 210, 205–2014. [Google Scholar] [CrossRef]
- Rajic, N.; Stojakovic, D.; Jevtic, S.; Zabukovec, L.N.; Kovac, J.; Kaucic, V. Removal of aqueous manganese using the natural zeolitic tuff from the Vranjska Banja deposit in Serbia. J. Hazard. Mater. 2009, 172, 1450–1457. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, M.; Arcon, I.; Kovac, J.; Novak Tusar, N.; Obradovic, B.; Rajic, N. Removal of manganese in batch and fluidized bed systems using beads of zeolite a as adsorbent. Microporous Mesoporous Mater. 2016, 226, 378–385. [Google Scholar] [CrossRef]
- Yuksel, S.; Yurum, Y. Removal of Boron from Aqueous Solutions by Adsorption Using Fly Ash, Zeolite, and Demineralized Lignite. Sep. Sci. Technol. 2010, 45, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Kluczka, J.; Trojanowska, J.; Zolotajkin, M. Utilization of fly ash zeolite for boron removal from aqueous solution. Desalin. Water Treat. 2015, 54, 1839–1849. [Google Scholar] [CrossRef]
- Kluczka, J.; Pudło, W.; Krukiewicz, K. Boron adsorption removal by commercial and modified activated carbons. Chem. Eng. Res. Des. 2019, 147, 30–42. [Google Scholar] [CrossRef]
- Demey, H.; Barron-Zambrano, J.; Mhadhbi, T.; Miloudi, H.; Yang, Z.; Ruiz, M.; Sastre, A.M. Boron Removal from Aqueous Solutions by Using a Novel Alginate-Based Sorbent: Comparison with Al2O3 Particles. Polymers 2019, 11, 1509. [Google Scholar] [CrossRef] [Green Version]
- Kluczka, J.; Korolewicz, T.; Zolotajkin, M.; Simka, W.; Raczek, M. A new adsorbent for boron removal from aqueous solutions. Environ. Technol. 2013, 34, 1369–1376. [Google Scholar] [CrossRef]
- Demetriou, A.; Pashalidis, I.; Nicolaides, A.; Kumke, M. Surface mechanism of the boron adsorption on alumina in aqueous solutions. Desalin. Water Treat. 2013, 51, 6130–6136. [Google Scholar] [CrossRef]
- Kluczka, J. Boron Removal from Aqueous Solutions using an Amorphous Zirconium Dioxide. Int. J. Environ. Res. 2015, 9, 711–720. [Google Scholar]
- Kluczka, J.; Gnus, M.; Dudek, G.; Turczyn, R. Removal of boron from aqueous solution by composite chitosan beads. Sep. Sci. Technol. 2017, 52, 1559–1571. [Google Scholar] [CrossRef]
- Ogata, F.; Nagai, N.; Toda, M.; Otani, M.; Nakamura, T.; Kawasaki, N. Evaluation of the Interaction between Borate Ions and Nickel–Aluminum Complex Hydroxide for Purification of Wastewater. Chem. Pharm. Bull. 2019, 67, 487–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakóbik-Kolon, A.; Mitko, K.; Bok-Badura, J. Zinc Sorption Studies on Pectin-Based Biosorbents. Materials 2017, 10, 844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakóbik-Kolon, A.; Bok-Badura, J.; Milewski, A.; Mitko, K. Sorption studies of cadmium and lead ions on hybrid polysaccharide biosorbents. Sep. Sci. Technol. 2018, 53, 1132–1141. [Google Scholar] [CrossRef]
- Lapo, B.; Demey, H.; Carchi, T.; Sastre, A.M. Antimony Removal from Water by a Chitosan-Iron(III)[ChiFer(III)] Biocomposite. Polymers 2019, 11, 351. [Google Scholar] [CrossRef] [Green Version]
- Kluczka, J.; Tórz, A.; Łącka, D.; Kazek-Kęsik, A.; Adamek, J. Boron Removal by Adsorption on Cobalt(II) Doped Chitosan Bio-composite. J. Polym. Environ. 2018, 26, 2039–2048. [Google Scholar] [CrossRef] [Green Version]
- Kluczka, J.; Dudek, G.; Kazek-Kęsik, A.; Gnus, M. Chitosan hydrogel beads supported with ceria for boron removal. Int. J. Mol. Sci. 2019, 20, 1567. [Google Scholar] [CrossRef] [Green Version]
- Kluczka, J.; Dudek, G.; Kazek-Kęsik, A.; Gnus, M.; Krzywiecki, M.; Mitko, K.; Krukiewicz, K. The Use of Lanthanum Ions and Chitosan for Boron Elimination from Aqueous Solutions. Polymers 2019, 11, 718. [Google Scholar] [CrossRef] [Green Version]
- Desbrieres, J.; Guibal, E. Chitosan for wastewater treatment. Polym. Int. 2018, 67, 7–14. [Google Scholar] [CrossRef]
- Barbusiński, K.; Salwiczek, S.; Paszewska, A. The use of chitosan for removing selected pollutants from water and wastewater—Short review. Archit. Civ. Eng. Environ. 2016, 9, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Pestov, A.; Bratskaya, S. Chitosan and Its Derivatives as Highly Efficient Polymer Ligands. Molecules 2016, 21, 330. [Google Scholar] [CrossRef] [Green Version]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Pakdel, P.; Peighambardoust, S. Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr. Polym. 2018, 201, 264–279. [Google Scholar] [CrossRef] [PubMed]
- Bursali, E.A.; Seki, Y.; Seyhan, S.; Delener, M.; Yurdakoc, M. Synthesis of Chitosan Beads as Boron Sorbents. J. Appl. Polym. Sci. 2011, 122, 657–665. [Google Scholar] [CrossRef]
- Zarzycki, R.; Modrzejewska, Z.; Kierzkowska-Pawlak, H.; Sujka, W. Mechanism of Metal Ion Sorption in Chitosan Hydrogel-Calorimetric Studies. Proc. ECOpole 2009, 3, 221–227. [Google Scholar]
- Yan, J.; Li, X.; Qiu, F.; Zhao, H.; Yang, D.; Wang, J.; Wen, W. Synthesis of β-cyclodextrin–chitosan–graphene oxide composite and its application for adsorption of manganese ion (II). Mater. Technol. 2016, 31, 406–415. [Google Scholar]
- Wu, S.P.; Dai, X.Z.; Kan, J.R.; Shilong, F.D.; Zhu, M.Y. Fabrication of carboxymethyl chitosan-hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chin. Chem. Lett. 2017, 28, 625–632. [Google Scholar] [CrossRef]
- Al-Wakeel, K.Z.; Monem, H.A.E.; Khalil, M.M.H. Removal of divalent manganese from aqueous solution using glycine modified chitosan resin. J. Environ. Chem. Eng. 2015, 3, 179–186. [Google Scholar] [CrossRef]
- Abdeen, Z.; Mohammad, S.G.; Mahmoud, M.S. Adsorption of Mn (II) ion on polyvinyl alcohol/chitosan dry blending from aqueous solution. Environ. Nanotechnol. Monit. Manag. 2015, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sareban, Z.; Javanbakht, V. Preparation and characterization of a novel nanocomposite of clinoptilolite/maghemite/chitosan/urea for manganese removal from aqueous solution. Korean J. Chem. Eng. 2017, 34, 2886–2900. [Google Scholar] [CrossRef]
- Demey, H.; Vincent, T.; Ruiz, M.; Sastre, A.; Guibal, E. Development of a new chitosan/Ni(OH)(2)-based sorbent for boron removal. Chem. Eng. J. 2014, 244, 576–586. [Google Scholar] [CrossRef]
- Kluczka, J.; Gnus, M.; Dudek, G.; Kazek-Kęsik, A. Zirconium-chitosan hydrogel beads for removal of boron from aqueous solutions. Polymer 2018, 150, 109–118. [Google Scholar] [CrossRef]
- Michaels, A.S. Simplified Methods of Interpreting Kinetic Data in Fixed-Bed Ion Exchange. Ind. Eng. Chem. 1952, 44, 1922–1930. [Google Scholar] [CrossRef]
- Tsai, W.C.; de Luna, M.D.G.; Bermillo-Arriesgado, H.L.P.; Futalan, C.M.; Colades, J.I.; Wan, M.W. Competitive Fixed-Bed Adsorption of Pb(II), Cu(II), and Ni(II) from Aqueous Solution Using Chitosan-Coated Bentonite. Int. J. Polym. Sci. 2016. [Google Scholar] [CrossRef] [Green Version]
- Duong, D.D. Adsorption Analysis Equilibria and Kinetics; Imperial College Press: London, UK, 1998. [Google Scholar]
- Paderewski, M.L. Adsorption Processes in Chemical Engineering; WNT: Warszawa, Poland, 1999. [Google Scholar]
- Treybal, R.E. Mass Transfer Operations; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Khan, M.A.; Wabaidur, S.M.; Siddiqui, M.R.; Alqadami, A.A.; Khan, A.H. Silico-manganese fumes waste encapsulated cryogenic alginate beads for aqueous environment de-colorization. J. Clean. Prod. 2020, 244, 118867. [Google Scholar] [CrossRef]
- Khan, M.A.; Siddiqui, M.R.; Otero, M.; Alshareef, S.A.; Rafatullah, M. Removal of Rhodamine B from Water Using a Solvent Impregnated Polymeric Dowex 5WX8 Resin: Statistical Optimization and Batch Adsorption Studies. Polymers 2020, 12, 500. [Google Scholar] [CrossRef] [Green Version]
- Koseoglu, P.; Yoshizuka, K.; Nishihama, S.; Yuksel, U.; Kabay, V. Removal of Boron and Arsenic from Geothermal Water in Kyushu Island, Japan, by Using Selective Ion Exchange Resins. Solvent Extr. Ion Exch. 2011, 29, 440–457. [Google Scholar] [CrossRef]
- Demey-Cedeño, H.; Ruiz, M.; Barron-Zambrano, J.A.; Sastre, A.M. Boron removal from aqueous solutions using alginate gel beads in fixed-bed systems. J. Chem. Technol. Biotechnol. 2014, 89, 934–940. [Google Scholar] [CrossRef] [Green Version]
- İpek, İ.Y.; Kabay, N.; Yüksel, M. Modeling of fixed bed column studies for removal of boron from geothermal water by selective chelating ion exchange resins. Desalination 2013, 310, 151–157. [Google Scholar] [CrossRef]
- Polowczyk, I.; Ulatowska, J.; Koźlecki, T.; Bastrzyk, A.; Sawiński, W. Studies on removal of boron from aqueous solution by fly ash agglomerates. Desalination 2013, 310, 93–101. [Google Scholar] [CrossRef]
- Demey, H.; Vincent, T.; Ruiz, M.; Nogueras, M.; Sastre, A.M.; Guibal, E. Boron recovery from seawater with a new low-cost adsorbent material. Chem. Eng. J. 2014, 254, 463–471. [Google Scholar] [CrossRef]
- Halim, A.A.; Roslan, N.A.; Yaacub, N.S.; Latif, M.T. Boron Removal from Aqueous Solution Using Curcumin-impregnated Activated Carbon. Sains Malays. 2013, 42, 1293–1300. [Google Scholar]
- Guan, Z.; Lv, J.; Bai, P.; Guo, X. Boron removal from aqueous solutions by adsorption—A review. Desalination 2016, 383, 29–37. [Google Scholar] [CrossRef]
- Bodzek, M.; Konieczny, K. Usuwanie Zanieczyszczeń Nieorganicznych ze Środowiska Wodnego Metodami Membranowymi; Wydawnictwo Seidel-Przywecki Sp. z o.o.: Warszawa, Poland, 2011. [Google Scholar]
Al (mg/dm3) | B (mg/dm3) | Ba (mg/dm3) | Ca (g/dm3) | Cl (g/dm3) | F (mg/dm3) | K (mg/dm3) | Li (mg/dm3) | Mg (mg/dm3) |
0.130 | 26.5 | 21.2 | 1.10 | 2.16 | 1.43 | 74.0 | 0.797 | 394 |
Mn (mg/dm3) | Na (mg/dm3) | Pb (mg/dm3) | S (mg/dm3) | Sr (mg/dm3) | Zn (mg/dm3) | COD * (mgO2/dm3) | pH | Electrolytic Conductance (mS/cm) |
4.64 | 599 | 0.258 | 170 | 19.6 | 8.33 | 128 | 7.26 | 51 |
Isotherm Model | Element | Parameters of the Isotherm Models, q(Mn)exp = 0.75 ± 0.01 mg/g (for C0 = 4.39 mg/dm3), q(B)exp = 1.61 ± 0.1 mg/g (for C0 = 26.4 mg/dm3) | |||
---|---|---|---|---|---|
qm (mg/g) | B (dm3/mg) | R2 | ME (%) | ||
Langmuir | Mn | 0.508 | 2.16 | 0.941 | 19.2 |
B | 2.00 | 0.136 | 0.992 | 2.85 | |
KF ((mg/g) (dm3/mg)1/n) | n | R2 | ME (%) | ||
Freundlich | Mn | 0.331 | 1.82 | 0.972 | 9.60 |
B | 0.369 | 2.17 | 0.977 | 4.35 | |
Xm (mg/g) | E (kJ/mol) | R2 | ME (%) | ||
Dubinin–Radushkevich | Mn | 5.98 | −11.2 | 0.964 | 82.9 |
B | 5.23 | −10.0 | 0.985 | 8.96 |
Element | Influent | C0 mg/dm3 | Vb (cm3) | Cb (mg/dm3) | qb (mg/g) | Vtotal (cm3) | qtotal (mg/g) | MTZ (cm) | qexpt (mg/g) |
---|---|---|---|---|---|---|---|---|---|
B | Synthetic solution | 23.43 | 40 | 0.991 | 0.306 | 450 | 1.87 | 13.7 | 1.986 |
B | FGD wastewater | 24.67 | 30 | 0.998 | 0.238 | 445 | 1.89 | 14.0 | 1.92 |
Mn | Synthetic solution | 4.67 | 50 | 0.505 | 0.076 | 110 | 0.108 | 8.2 | 0.105 |
Mn | FGD wastewater | 3.021 | 50 | 0.507 | 0.049 | 175 | 0.102 | 10.7 | 0.106 |
Sorbent | Initial Concentration | Breakthrough Capacity | Adsorption Uptake | Exhaustion Capacity | Sorbent Mass/ Volume | Ref. |
---|---|---|---|---|---|---|
Lewatit MK 51 | 33.9 mg/dm3 | 1.56 mg/cm3 | 99% | 2.48 mg/cm3 | 2 cm3 | [51] |
Diaion CRB 03 | 33.9 mg/dm3 | 2.36 mg/cm3 | 87% | 4.08 mg/cm3 | 2 cm3 | [51] |
Ca-Alginate gel beads | 25 mg/dm3 | - | 43% | 2.07 mg/g | 1.44 g | [52] |
Dowex XUS 43594,00 | 8.5-13 mg/dm3 | 2.5 mg/g | 81% | 4.8 mg/g | 3 cm3 | [53] |
Fly ash agglomerates | 100 mg/dm3 | - | - | 0.897 mg/g | 18 g | [54] |
Chitosan/Fe(OH)3 | 4.2 mg/dm3 | - | 29% | 0.08 mg/g | 7.2 g | [55] |
Curcumin-AC | 890 mg/dm3 | - | 99% | 1.70 mg/g | 227 g | [56] |
Chitosan/Zr(OH)4 hydrogel beads | 24.7 mg/dm3 | 0.238 mg/g | 89% | 1.89 mg/g | 15 g | This study |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluczka, J. Removal of Boron and Manganese Ions from Wet-Flue Gas Desulfurization Wastewater by Hybrid Chitosan-Zirconium Sorbent. Polymers 2020, 12, 635. https://doi.org/10.3390/polym12030635
Kluczka J. Removal of Boron and Manganese Ions from Wet-Flue Gas Desulfurization Wastewater by Hybrid Chitosan-Zirconium Sorbent. Polymers. 2020; 12(3):635. https://doi.org/10.3390/polym12030635
Chicago/Turabian StyleKluczka, Joanna. 2020. "Removal of Boron and Manganese Ions from Wet-Flue Gas Desulfurization Wastewater by Hybrid Chitosan-Zirconium Sorbent" Polymers 12, no. 3: 635. https://doi.org/10.3390/polym12030635
APA StyleKluczka, J. (2020). Removal of Boron and Manganese Ions from Wet-Flue Gas Desulfurization Wastewater by Hybrid Chitosan-Zirconium Sorbent. Polymers, 12(3), 635. https://doi.org/10.3390/polym12030635