Effect of Stabilizer States (Solid Vs Liquid) on Properties of Stabilized Natural Rubbers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of NR Samples
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smitthipong, W.; Nardin, M.; Schultz, J.; Nipithakul, T.; Suchiva, K. Study of tack properties of uncrosslinked natural rubber. J. Adhes. Sci. Technol. 2004, 18, 1449–1463. [Google Scholar] [CrossRef]
- Smitthipong, W.; Nardin, M.; Schultz, J.; Suchiva, K. Adhesion and self-adhesion of rubbers, crosslinked by electron beam irradiation. Int. J. Adhes. Adhes. 2007, 27, 352–357. [Google Scholar] [CrossRef]
- Smitthipong, W.; Nardin, M.; Schultz, J.; Suchiva, K. Adhesion and self-adhesion of immiscible rubber blends. Int. J. Adhes. Adhes. 2009, 29, 253–258. [Google Scholar] [CrossRef]
- Suksup, R.; Sun, Y.; Sukatta, U.; Smitthipong, W. Foam rubber from centrifuged and creamed latex. J. Polym. Eng. 2019, 39, 336–342. [Google Scholar] [CrossRef]
- Backhaus, R.A. Rubber formation in plants—A mini-review. Isr. J. Bot. 1985, 34, 283–293. [Google Scholar]
- Tarachiwin, L.; Tanaka, Y.; Sakdapipanich, J. Structure and origin of long-chain branching and gel in natural rubber. Kautschuk Gummi Kunststoffe 2005, 58, 115–122. [Google Scholar]
- Tarachiwin, L.; Sakdapipanich, J.; Ute, K.; Kitayama, T.; Tanaka, Y. Structural Characterization of α-Terminal Group of Natural Rubber. 2. Decomposition of Branch-Points by Phospholipase and Chemical Treatments. Biomacromolecules 2005, 6, 1858–1863. [Google Scholar] [CrossRef] [PubMed]
- Nimpaiboon, A.; Sriring, M.; Sakdapipanich, J. Molecular structure and storage hardening of natural rubber: Insight into the reactions between hydroxylamine and phospholipids linked to natural rubber molecule. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Chollakup, R.; Suwanruji, P.; Tantatherdtam, R.; Smitthipong, W. New approach on structure-property relationships of stabilized natural rubbers. J. Polym. Res. 2019, 26, 37. [Google Scholar] [CrossRef]
- Wei, Y.; Ding, A.; Jin, L.; Zhang, H.; Liao, S. Quantitative Analysis of Abnormal Groups on Molecular Chain of Natural Rubber. Polym. Sci. Ser. B 2019, 61, 856–864. [Google Scholar]
- Nimpaiboon, A.; Amnuaypornsri, S.; Sakdapipanich, J. Obstruction of storage hardening in nr by using polar chemicals. Rubber Chem. Technol. 2016, 89, 358–368. [Google Scholar] [CrossRef]
- Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley & Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Montha, S.; Suwandittakul, P.; Poonsrisawat, A.; Oungeun, P.; Kongkaew, C. Maillard Reaction in Natural Rubber Latex: Characterization and Physical Properties of Solid Natural Rubber. Adv. Mater. Sci. Eng. 2016, 2016, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rungsanthie, K.; Suwanruji, P.; Tantatherdtam, R.; Chollakup, R. Effect of non-rubber components on viscosity stabilization of natural rubber. Int. Conf. Polym. Process. Soc. 2012, 11, 15. [Google Scholar]
- Smitthipong, W.; Tantatherdtam, R.; Rungsanthien, K.; Suwanruji, P.; Klanarong, S.; Radabutra, S.; Thanawan, S.; Vallat, M.F.; Nardin, M.; Mougin, K.; et al. Effect of Non-Rubber Components on Properties of Sulphur Crosslinked Natural Rubbers. Adv. Mater. Res. 2013, 844, 345–348. [Google Scholar] [CrossRef]
- Amnuaypornsri, S.; Sakdapipanich, J.; Toki, S.; Hsiao, B.; Ichikawa, N.; Tanaka, Y. Strain-Induced Crystallization of Natural Rubber: Effect of Proteins and Phospholipids. Rubber Chem. Technol. 2008, 81, 753–766. [Google Scholar] [CrossRef]
Name | Samples |
---|---|
Control NR | Unstabilized NR |
NRD/0.2 HS | Dry NR with dry hydroxylamine sulfate 0.2 phr |
NRD/2.0 HS | Dry NR with dry hydroxylamine sulfate 2.0 phr |
NRL/0.2 HS | Natural latex with liquid hydroxylamine sulfate 0.2 phr |
NRL/2.0 HS | Natural latex with liquid hydroxylamine sulfate 2.0 phr |
Sample Name | Po (± 5 a.u.) | PRI (± 5 a.u.) | ||
---|---|---|---|---|
0 Weeks | 12 Weeks | 0 Weeks | 12 Weeks | |
NR | 20.0 | 28.0 | 85.0 | 67.9 |
NRD/0.2 HS | 28.5 | 32.0 | 61.4 | 59.4 |
NRD/2.0 HS | 22.0 | 21.5 | 54.6 | 51.2 |
NRL/0.2 HS | 22.5 | 24.5 | 62.2 | 59.2 |
NRL/2.0 HS | 18.5 | 18.0 | 56.8 | 54.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Promhuad, K.; Smitthipong, W. Effect of Stabilizer States (Solid Vs Liquid) on Properties of Stabilized Natural Rubbers. Polymers 2020, 12, 741. https://doi.org/10.3390/polym12040741
Promhuad K, Smitthipong W. Effect of Stabilizer States (Solid Vs Liquid) on Properties of Stabilized Natural Rubbers. Polymers. 2020; 12(4):741. https://doi.org/10.3390/polym12040741
Chicago/Turabian StylePromhuad, Khwanchat, and Wirasak Smitthipong. 2020. "Effect of Stabilizer States (Solid Vs Liquid) on Properties of Stabilized Natural Rubbers" Polymers 12, no. 4: 741. https://doi.org/10.3390/polym12040741
APA StylePromhuad, K., & Smitthipong, W. (2020). Effect of Stabilizer States (Solid Vs Liquid) on Properties of Stabilized Natural Rubbers. Polymers, 12(4), 741. https://doi.org/10.3390/polym12040741