Dental Composition Modified with Aryloxyphosphazene Containing Carboxyl Groups
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis and Characterization of the Modifier of Dental Composition
3.2. Properties of the Dental Compositions Modified with Product III
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zitnik, M.; Nguyen, F.; Wang, B.; Leskovec, J.; Goldenberg, A.; Hoffman, M.M. Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Inf. Fusion 2019, 50, 71–91. [Google Scholar] [CrossRef] [PubMed]
- Dumpa, N.; Goel, K.; Guo, Y.; McFall, H.; Pillai, A.R.; Shukla, A.; Repka, M.A.; Murthy, S.N. Stability of Vaccines. AAPS PharmSciTech 2019, 20, 42. [Google Scholar] [CrossRef] [PubMed]
- Bruneau, M.; Bennici, S.; Brendle, J.; Dutournie, P.; Limousy, L.; Pluchon, S. Systems for stimuli-controlled release: Materials and applications. J. Control. Release 2019, 294, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.; Gurumurthy, A.; Hossain, M.A.; Gunn, E.M.; Bungert, J. Engineering Globin Gene Expression. Mol. Ther. Methods Clin. Dev. 2019, 12, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Hoes, M.F.; Bomer, N.; van der Meer, P. Concise Review: The Current State of Human In Vitro Cardiac Disease Modeling: A Focus on Gene Editing and Tissue Engineering. Stem Cells Transl. Med. 2019, 8, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Orsini, G.; Pagella, P.; Mitsiadis, T.A. Modern Trends in Dental Medicine: An Update for Internists. Am. J. Med. 2018, 131, 1425–1430. [Google Scholar] [CrossRef] [Green Version]
- Tao, O.; Wu, D.T.; Pham, H.M.; Pandey, N.; Tran, S.D. Nanomaterials in craniofacial tissue regeneration: A review. Appl. Sci. 2019, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Chi, M.; Qi, M.; Lan, A.; Wang, P.; Weir, M.D.; Melo, M.A.; Sun, X.; Dong, B.; Li, C.; Wu, J.; et al. Novel bioactive and therapeutic dental polymeric materials to inhibit periodontal pathogens and biofilms. Int. J. Mol. Sci. 2019, 20, 278. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; Guo, X.; Jiang, X.; Zhan, X.; Zhang, J.; Shi, Z.; Cui, Z.; Zhu, S. Properties of methacryl polyhedral oligomeric silsesquioxane (poss-ma) doped methacrylate-based dental resins and composites containing glass flake/ba-al-sio2 glass powder as inorganic dental fillers. Acta Medica Mediterr. 2019, 35, 87–92. [Google Scholar]
- Degrazia, F.W.; Leitune, V.C.B.; Visioli, F.; Samuel, S.M.W.; Collares, F.M. Long-term stability of dental adhesive incorporated by boron nitride nanotubes. Dent. Mater. 2018, 34, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Dias, H.B.; Bernardi, M.I.B.; Bauab, T.M.; Hernandes, A.C.; Souza Rastelli, A.N. Titanium dioxide and modified titanium dioxide by silver nanoparticles as an anti biofilm filler content for composite resins. Dent. Mater. 2019, 35, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Raorane, D.V.; Chaughule, R.S.; Pednekar, S.R.; Lokur, A. Experimental synthesis of size-controlled TiO2 nanofillers and their possible use as composites in restorative dentistry. Saudi Dent. J. 2019, 31, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, R.; Zhang, J.; Hua, H.; Zhu, M. Synthesis of core-shell structured ZnO@ m-SiO2 with excellent reinforcing effect and antimicrobial activity for dental resin composites. Dent. Mater. 2018, 34, 1846–1855. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Wang, X.; Li, Q.; Ye, Z.; Xing, X. Mechanical property and antibacterial activity of silver-loaded polycation functionalized nanodiamonds for use in resin-based dental material formulations. Mater. Lett. 2018, 220, 104–107. [Google Scholar] [CrossRef]
- Moldovan, M.; Prodan, D.; Sarosi, C.; Carpa, R.; Socaci, C.; Rosu, M.C.; Pruneanu, S. Synthesis, morpho-structural properties and antibacterial effect of silicate-based composites containing graphene oxide/hydroxyapatite. Mater. Chem. Phys. 2018, 217, 48–53. [Google Scholar] [CrossRef]
- Nguyen, T.M.T.; Wang, P.W.; Hsu, H.M.; Cheng, F.Y.; Shieh, D.B.; Wong, T.Y.; Chang, H.J. Dental cement’s biological and mechanical properties improved by ZnO nanospheres. Mater. Sci. Eng. C 2019, 97, 116–123. [Google Scholar] [CrossRef]
- Salama, A. Cellulose/calcium phosphate hybrids: New materials for biomedical and environmental applications. Int. J. Biol. Macromol. 2019, 127, 606–617. [Google Scholar] [CrossRef]
- Wu, Y.R.; Chang, C.W.; Chang, K.C.; Lin, D.J.; Ko, C.L.; Wu, H.Y.; Chen, W.C. Effect of micro-/nano-hybrid hydroxyapatite rod reinforcement in composite resins on strength through thermal cycling. Polym. Compos. 2019, 40, 3703–3710. [Google Scholar] [CrossRef]
- Srivastava, R.; Liu, J.; He, C.; Sun, Y. BisGMA analogues as monomers and diluents for dental restorative composite materials. Mater. Sci. Eng. C 2018, 88, 25–31. [Google Scholar] [CrossRef]
- He, J.; Garoushi, S.; Säilynoja, E.; Vallittu, P.K.; Lassila, L. The effect of adding a new monomer “Phene” on the polymerization shrinkage reduction of a dental resin composite. Dent. Mater. 2019, 35, 627–635. [Google Scholar] [CrossRef]
- Zhao, S.N.; Yang, D.L.; Wang, D.; Pu, Y.; Le, Y.; Wang, J.X.; Chen, J.F. Design and efficient fabrication of micro-sized clusters of hydroxyapatite nanorods for dental resin composites. J. Mater. Sci. 2019, 54, 3878–3892. [Google Scholar] [CrossRef]
- Wu, Y.R.; Chang, C.W.; Chang, K.C.; Ko, C.L.; Wu, H.Y.; Chern, J.H.; Chen, W.C. Characterization of hybrid light-cured resin composites reinforced by microspherical silanized DCPA/nanorod HA via thermal fatigue. J. Aust. Ceram. Soc. 2019, 55, 235–245. [Google Scholar] [CrossRef]
- Okulus, Z.; Sandomierski, M.; Zielińska, M.; Buchwald, T.; Voelkel, A. Zeolite fillers for resin-based composites with remineralizing potential. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 210, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, L.; Xing, D.; Qi, M.; Li, X.; Sun, J.; Melo, M.A.S.; Weir, M.D.; Oates, T.W.; Bai, Y.; et al. Novel rechargeable calcium phosphate nanoparticle-filled dental cement. Dent. Mater. J. 2019, 38, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Salim, F.M. Tribological and Mechanical Characteristics of Dental Fillings Nanocomposites. Energy Procedia 2019, 157, 512–521. [Google Scholar] [CrossRef]
- Cadenaro, M.; Maravic, T.; Comba, A.; Mazzoni, A.; Fanfoni, L.; Hilton, T.; Ferracane, J.; Breschi, L. The role of polymerization in adhesive dentistry. Dent. Mater. 2019, 35, e1–e22. [Google Scholar] [CrossRef]
- Kireev, V.V.; Chistyakov, E.M.; Filatov, S.N.; Tupikov, A.S.; Panfilova, D.V.; Chetverikova, A.I. Polymeric dental composites modified with carboxy phosphazene methacrylates. Russ. J. Appl. Chem. 2015, 88, 866–870. [Google Scholar] [CrossRef]
- Chistyakov, E.M.; Panfilova, D.V.; Kireev, V.V.; Volkov, V.V.; Bobrov, M.F. Synthesis and properties of hexakis-(β-carboxyethenylphenoxy)cyclotriphosphazene. J. Mol. Struct. 2017, 1148, 1–6. [Google Scholar] [CrossRef]
- Hayes, R.F.; Allen, C.W. The mechanism of a phosphazene–phosphazane rearrangement. Dalton Trans. 2016, 45, 2060–2068. [Google Scholar] [CrossRef]
- Allcock, H.R. Phosphorus-Nitrogen Compounds: Cyclic, Linear, and High Polymeric Systems; Academic Press: New York, NY, USA; London, UK, 1972. [Google Scholar]
- Toledano, M.; Osorio, R.; Osorio, E.; Fuentes, V.; Prati, C.; Garcıa-Godoy, F. Sorption and solubility of resin-based restorative dental materials. J. Dent. 2003, 31, 43–50. [Google Scholar] [CrossRef]
- Misilli, T.; Gönülol, N. Water sorption and solubility of bulk-fill composites polymerized with a third generation LED LCU. Braz. Oral Res. 2017, 31, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flury, S.; Hayoz, S.; Peutzfeldt, A.; Hüsler, J.; Lussi, A. Depth of cure of resin composites: Is the ISO 4049 method suitable for bulk fill materials. Dent. Mater. 2012, 28, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Stenhagen, I.S.; Rukke, H.V.; Dragland, I.S.; Kopperud, H.M. Effect of methacrylated chitosan incorporated in experimental composite and adhesive on mechanical properties and biofilm formation. Eur. J. Oral Sci. 2019, 127, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratap, B.; Gupta, R.K.; Bhardwaj, B.; Nag, M. Resin based restorative dental materials: Characteristics and future perspectives. Jpn. Dent. Sci. Rev. 2019, 55, 126–138. [Google Scholar] [CrossRef]
Binder Sample Number | Product III Content, wt % | Weight of Product III, g | Weight of BM, g |
---|---|---|---|
1 | 1 | 0.5 | 49.5 |
2 | 2.5 | 1.25 | 48.75 |
3 | 5 | 2.5 | 47.5 |
4 | 7.5 | 3.75 | 46.25 |
5 | 10 | 5 | 45 |
Sample No. | Flexural Strength, MPa | Water Sorption, μg/mm3 | Water Solubility, μg/mm3 | Cure Depth, mm | Adhesion, MPa |
---|---|---|---|---|---|
0* | 96.4 ± 2.8 | 17.2 ± 0.3 | 4.8 ± 0.1 | 2.49 ± 0.01 | 2.5 ± 0.1 |
1 | 97.2 ± 2.8 | 10.5 ± 0.2 | 2.4 ± 0.1 | 2.54 ± 0.01 | 3.6 ± 0.1 |
2 | 98.4 ± 3.0 | 10.6 ± 0.2 | 2.4 ± 0.1 | 2.58 ± 0.01 | 4.6 ± 0.1 |
3 | 104.5 ± 2.9 | 11.0 ± 0.2 | 2.5 ± 0.1 | 2.59 ± 0.01 | 9.2 ± 0.1 |
4 | 97.8 ± 2.8 | 11.0 ± 0.2 | 2.5 ± 0.1 | 2.75 ± 0.01 | 10.8 ± 0.1 |
5 | 106.5 ± 2.6 | 11.0 ± 0.2 | 2.5 ± 0.1 | 2.88 ± 0.01 | 15.4 ± 0.1 |
Requirements ISO 4049:2019 | Not less 80 | No more 40 | No more 7.5 | Not less 1.5 | – |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chistyakov, E.M.; Kolpinskaya, N.; Posokhova, V.; Chuev, V. Dental Composition Modified with Aryloxyphosphazene Containing Carboxyl Groups. Polymers 2020, 12, 1176. https://doi.org/10.3390/polym12051176
Chistyakov EM, Kolpinskaya N, Posokhova V, Chuev V. Dental Composition Modified with Aryloxyphosphazene Containing Carboxyl Groups. Polymers. 2020; 12(5):1176. https://doi.org/10.3390/polym12051176
Chicago/Turabian StyleChistyakov, Evgeniy M., Natalya Kolpinskaya, Vera Posokhova, and Vladimir Chuev. 2020. "Dental Composition Modified with Aryloxyphosphazene Containing Carboxyl Groups" Polymers 12, no. 5: 1176. https://doi.org/10.3390/polym12051176
APA StyleChistyakov, E. M., Kolpinskaya, N., Posokhova, V., & Chuev, V. (2020). Dental Composition Modified with Aryloxyphosphazene Containing Carboxyl Groups. Polymers, 12(5), 1176. https://doi.org/10.3390/polym12051176