DFT Prediction of Factors Affecting the Structural Characteristics, the Transition Temperature and the Electronic Density of Some New Conjugated Polymers
Abstract
:1. Introduction
2. Method of Calculation
3. Results and Discussion
3.1. Effect of Distance between Layers
3.2. Effect of Impurities/Heterogeneity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Skotheim, T.A.E. Handbook of Conducting Polymers; Dekker: Michigan City, IN, USA, 1986. [Google Scholar]
- Chiang, C.K.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; MacDiarmid, A.G. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 1977, 39, 1098–1101. [Google Scholar] [CrossRef]
- Nambiar, S.; Yeow, J.T.W. Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 2011, 26, 1825–1832. [Google Scholar] [CrossRef]
- Hajian, A.; Rafati, A.A.; Afraz, A.; Najafi, M. Electrosynthesis of polythiophene nanowires and their application for sensing of chlorpromazine. J. Electrochem. Soc. 2014, 161, B196–B200. [Google Scholar] [CrossRef]
- English, J.T.; Deore, B.A.; Freund, M.S. Biogenic amine vapor detection using poly (aniline boronic acid) films. Sens. Actuators B 2006, 115, 666–671. [Google Scholar] [CrossRef]
- Shrestha, B.K.; Ahmad, R.; Shrestha, S.; Park, C.H.; Kim, C.S. In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application. Biosens Bioelectron. 2017, 94, 686–693. [Google Scholar] [CrossRef]
- Kumar, M.R.; Ryman, S.; Tareq, M.O.; Buchanan, D.; Freund, M.S. Chemical diversity in electrochemically deposited conducting polymer-based sensor arrays. Sens. Actuators B 2014, 202, 600–608. [Google Scholar] [CrossRef]
- Ayenimo, J.G.; Adeloju, S.B. Amperometric detection of glucose in fruit juices with polypyrrole-based biosensor with an integrated selective layer for the exclusion of interferences. Food Chem. 2017, 229, 127–135. [Google Scholar] [CrossRef]
- Chun, L.; Gaoquan, S. Polythiophene-based optical sensors for small molecules. ACS Appl. Mater. Interfaces 2013, 5, 4503–4510. [Google Scholar]
- Fang, Y.; Jiang, X.; Niu, L.; Wang, S. Constructing polypyrrole/aligned carbon nanotubes composite materials as electrodes for high-performance supercapacitors. Mater. Lett. 2017, 190, 232–235. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, X.; He, T.; Bi, Q.; Sun, L.; Liu, Z. Fabrication of polypyrrole/vanadium oxide nanotube composite with enhanced electrochemical performance as a cathode in rechargeable batteries. Appl. Surf. Sci. 2017, 405, 146–151. [Google Scholar] [CrossRef]
- Afzal, A.; Abuilaiwi, F.A.; Habib, A.; Awais, M.; Waje, S.B.; Atieh, M.A. Polypyrrole/carbon nanotube supercapacitors: Technological advances and challenges. J. Power Sources 2017, 352, 174–186. [Google Scholar] [CrossRef]
- Ebrahimi, I.; Gashti, M.P. Chemically reduced versus photo-reduced clay-Ag-polypyrrole ternary nanocomposites: Comparing thermal, optical, electrical and electromagnetic shielding properties. Mater. Res. Bull. 2016, 83, 96–107. [Google Scholar] [CrossRef]
- Zhao, H.; Hou, L.; Lu, Y. Electromagnetic shielding effectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) composite. ChemEng J. 2016, 297, 170–179. [Google Scholar] [CrossRef]
- Trung, V.Q.; van Hoan, P.; Phung, D.Q.; Duc, l.; Hang, l.T. Double corrosion protection mechanism of molybdate-doped polypyrrole/montmorillonite nanocomposites. J. Exp. Nanosci. 2014, 9, 282–292. [Google Scholar] [CrossRef] [Green Version]
- Rammelt, U.; Duc, L.M.; Plieth, W. Improvement of protection performance of polypyrrole by dopant anion. J. Appl. Electrochem. 2005, 35, 1225–1230. [Google Scholar] [CrossRef]
- Paliwoda-Porebska, G.; Rohwerder, M.; Stratmann, M.; Rammelt, U.; Duc, L.M.; Plieth, W. Release mechanism of electrodeposited polypyrrole doped with corrosion inhibitor anions. J. Solid State Electrochem. 2006, 10, 730–736. [Google Scholar] [CrossRef]
- Grari, O.; Taouil, A.E.; Dhouibi, L.; Buron, C.; Lallemand, F. Multilayered polymer role SiO2 composite coatings for functionalization of stainless steel: Characterization and corrosion protection behavior. Prog. Org. Coat. 2015, 88, 48–53. [Google Scholar] [CrossRef]
- Ilangovan, G.; Pillai, K.C. Preparation and characterization of monomeric molybdate (VI) anion-doped polypyrrole electrodes. J. Solid State Electrochem. 1999, 3, 474–477. [Google Scholar]
- Vera, R.; Schrebler, R.; Grez, P.; Romero, H. The corrosion-inhibiting effect of polypyrrole films doped with p -toluene-sulfonate, benzene-sulfonate or dodecyl-sulfate anions, as a coating on stainless steel in NaCl aqueous solutions. Prog. Org. Coat. 2014, 77, 853–858. [Google Scholar] [CrossRef]
- Frommer, J.E.; Chance, R.R. Encyclopedia of Polymer Science and Engineering; Wiley: New York, NY, USA, 1986; Volume 5, p. 462. [Google Scholar]
- Klamt, A.; Schüürmann, G. COSMO: A new approach to dielec trics screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 1993, 2, 99–805. [Google Scholar] [CrossRef]
- Dai, Y.; Chowdhury, S.; Blaisten-Barojas, E. Density functional theory study of the structure energetics of negatively charge doligopyrroles. Int. J. Quantum. Chem. 2011, 111, 2295–2305. [Google Scholar] [CrossRef]
- NIST. NIST Standard Reference Database 35; NIST/EPA Gas-Phase Infrared Database JCAMP Format; NIST: Gaithersburg, MD, USA, 2017.
- Ullah, H.; Shah, A.A.; Bilal, S.; Ayub, K. Doping and dedoping processes of polypyrrole: DFT study with hybrid functionals. J. Phys. Chem. C 2014, 118, 17819–17830. [Google Scholar] [CrossRef]
- Runge, E.; Gross, E.K.U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997–1000. [Google Scholar] [CrossRef]
- van Hoang, H.; Nguyen, T.D.; Ha, N.N. Corrosion inhibition mechanism of pyridine ion iron and its alloys using DFT. Asian J. Chem. 2013, 25, 3117–3120. [Google Scholar] [CrossRef]
- Roth, S.; Bleier, H. Solitons in polyacetylene. Adv. Phys. 1987, 36, 385. [Google Scholar] [CrossRef]
- Heeger, A.J.; Kivelson, S.; Schrieffer, J.R.; Su, W.P. Solitons in conducting polymers. Rev. Mod. Phys. 1988, 60, 750–781. [Google Scholar] [CrossRef]
- Chiang, C.K.; Drury, M.A.; Gau, S.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Park, Y.D. Synthesis of highly conducting films of derivatives of polyacetylene. J. Am. Chem. Soc. 1978, 100, 1013–1015. [Google Scholar] [CrossRef]
- Bhavana, A.D.; Insun, Y.; Freund, M.S. A switchable self-doped polyaniline: Interconversion between self-doped and non-self-doped forms. J. Am. Chem. Soc. 2004, 126, 52–53. [Google Scholar]
- Winokur, W.; Moon, Y.B.; Heeger, A.J.; Barker, J.; Bott, J.C.; Shirakavm, H. X-ray scattering from sodium-doped polyacetylene: In commensurate-com mensurate and order-disorder transformations. Phys. Rev. Lett. 1987, 58, 2329. [Google Scholar] [CrossRef]
- Moon, Y.-B.; Winokur, M.; Heeger, A.J.; Barker, J.; Bott, D.C. X-ray scattering from oriented durham polyacetylene: Structural changes after electrochemical doping. Macromolecules 1987, 20, 2457. [Google Scholar] [CrossRef]
- Chiang, C.K.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G. Conducting polymers: Halogen doped polyacetylene. J. Chem. Phys. 1978, 69, 5098. [Google Scholar] [CrossRef]
- Chiang, C.K.; Gau, S.C.; Fincher, C.R.; Park, Y.W.; MacDiarmid, A.G.; Heeger, A.J. Polyacetylene, (CH) x: N-Type and p-Type doping and compensation. Appl. Phys. Lett. 1978, 33, 18. [Google Scholar] [CrossRef]
- Ma, C.-Q.; Mena-Osteritz, E.; Debaerdemaeker, T.; Wienk, M.M.; Janssen, R.A.J.; Bauerle, P. Functionalized 3D oligothiophene dendrons, and dendrimers-nove l macromolecules for organic electronics. Angew. Chem. Int. Ed. 2007, 46, 1679–1683. [Google Scholar] [CrossRef]
- Zamoshchik, N.; Salzner, U.; Bendikov, M. Nature of Charge Carriers in Long Doped Oligothiophenes: The Effect of Counterions. J. Phys. Chem. C 2008, 112, 8408–8418. [Google Scholar] [CrossRef]
- Zade, S.S.; Bendikov, M. Theoretical study of long oligothiophene polycations as a model for doped polythiophene. J. Phys. Chem. C 2007, 111, 10662–10672. [Google Scholar] [CrossRef]
- Salzner, U. Does the donor-acceptor concept work for designing synthetic metals? theoretical investigation of poly (3-cyano-3′-hydroxy bithiophene). J. Phys. Chem. B 2002, 106, 9214–9220. [Google Scholar] [CrossRef]
- Rittmeyer, S.P.; Gross, A. Structural and electronic properties of oligo- and polythiophenes modified by substituents. Beilstein J. Nanotechnol. 2012, 3, 909–919. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, S.; Parthasar, R.; Subra mania, V.; Somanathan, N. Vibrational analysis of heterocyclic polymers: A comparative study of polythiophene, polypyrrole, and polyisothia-naphthene. J. Chem. Phys. 2005, 123, 164905. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Ananthakrishnan, S.J.; Somanathan, N. Structure-property relationships of electroluminescent polythio-phenes: Role of nitrogen-based heterocycles as side chains. Bull. Mater. Sci. 2011, 34, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.; Wijsboom, Y.H.; Leitus, G.; Bendikov, M. Tuning the band gap of low-band-gap polyselenophenes and polythiophenes: The effect of the heteroatom. Chem. Mater. 2011, 23, 896–906. [Google Scholar] [CrossRef]
- Guay, J.; Kasai, P.; Diaz, A.; Wu, R.; Tour, J.M.; Dao, L.H. Chain-length dependence of electrochemical and electronic proper-ties of neutral and oxidized soluble.alpha. Alpha Coupled Thiophene Oligomers Chem. Mater. 1992, 4, 1097–1110. [Google Scholar]
- Gao, J.; Niles, E.T.; Grey, J.K. J-aggregates promote efficient charge transfer doping of poly(3-hexylthiophene). J. Phys. Chem. Lett. 2013, 4, 2953–2957. [Google Scholar] [CrossRef]
- Mena-Osteritz, E.; Zhang, F.; Gotz, G.; Reineke, P.; Bauerle, P. Optical properties of fully conjugated cyclo [n] thiophenes-an experimental and theoretical approach. Beilstein J. Nanotechnol. 2011, 2, 720–726. [Google Scholar] [CrossRef] [Green Version]
- Quoc, T.V.; Thuy, D.T.T.; Thanh, T.D.; Ngoc, T.P.; Thien, V.N.; Thuy, C.N.; Meervelt, L.V. Some chalcones derived from thiophene-3-carbaldehyde: Synthesis and crystal structures. Acta Crystallograph. Sect. E 2019, 75, 957–963. [Google Scholar] [CrossRef]
- Vu, Q.-T.; Pavlik, M.; Hebestreit, N.; Rammelt, U.; Plieth, W.; Pfleger, J. Nanocomposites based on titanium dioxide and polythiophene: Structure and Properties. React. Funct. Polym. 2005, 65, 69–77. [Google Scholar] [CrossRef]
- Vu, Q.-T.; Pavlik, M.; Hebestreit, N.; Pfleger, J.; Rammelt, U.; Plieth, W. Electrophoretic deposition of nanocomposites formed from polythiophene and metal oxides. Electroch. Acta 2005, 51, 1117–1124. [Google Scholar] [CrossRef]
- Trung, V.Q.; Linh, N.N.; Linh, D.K.; Pfleger, J. Synthesis and characterization of polythiophenes from hydrazone derivatives side groups. Vietnam J. Chem. 2016, 54, 730–735. [Google Scholar]
- Trung, V.Q.; Linh, N.N.; Duong, T.T.T.; Chinh, N.T.; Linh, D.K.; Hung, H.M.; Oanh, D.T.Y. Synthesis and characterization of novel poly[4-phenyl-3-(thiophene-3-ylmethyl)-1H-1,2,4-triazole -5(4H)-thione]. Vietnam J. Chem. 2019, 57, 770–776. [Google Scholar] [CrossRef] [Green Version]
- Pettifor, D.G.; Cottrell, A.H. Electron Theory in Alloy Design; Maney Publishing: Leeds, UK, 1992. [Google Scholar]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Bernholc, J. Computational materials science: The era of applied quantummechanics. Phys. Today 1999, 52, 30–35. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalizedgradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuzuki, S. Interaction energies of van der Waals and hydrogen-bonded systems calculated using density functional theory: Assessing the PW91 model. J. Chem. Phys. 2001, 114, 3949. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Hamann, D.R.; Schlüter, M.; Chiang, C. Norm-conserving pseudopotentials. Phys. Rev. Lett. 1979, 43, 1494–1497. [Google Scholar] [CrossRef]
- Akira, I.; Yoshiyuki, T.; Takeo, F.; Hirofumi, Y. Solid-state calculations of poly(vinylidene fluoride) using the hybrid DFT method: Spontaneous polarization of polymorphs. Polym. J. 2014, 46, 207–211. [Google Scholar]
- Yoshiaki, Y.; Yasuteru, M.; Masayoshi, T. Proposed Mechanism for the High-Yield Polymerization of Oxyethyl Propiolates with Rh Complex Catalyst Using the Density Functional Theory Method. Polymers 2019, 11, 93. [Google Scholar]
- Robert; Robert, G. Parr and Weitao Yang, Density-Functional Theory of Atoms and Molecules; Oxford University Press–Newyork Clarendon Press: New York, NY, USA, 1989. [Google Scholar]
- Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory, 2nd ed.; Wiley–VCH: Hoboken, NJ, USA, 2001. [Google Scholar]
- Søndenå, R.; Stølen, S.; Ravindran, P. Corner- versus face-sharing octahedra in AMnO3 perovskites (A = Ca, Sr, and Ba). Phys. Rev. B 2007, 75, 184105. [Google Scholar] [CrossRef] [Green Version]
- Slater, J.C. A Simplification of the hartree-fock method. Phys. Rev. 1951, 81, 385–390. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 1964, 136, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Englisch, H.; Englisch, R. Hohenberg-Kohn theorem and non-vrepresentable densities. Phys. A 1983, 121, 253–268. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 1965, 140, 1133–1138. [Google Scholar] [CrossRef] [Green Version]
- Andersen, O.K.; Jepsen, O.; Glotzel, D. Highlights of Condensed Matter Theory; Elsevier: Amsterdam, The Netherlands, 1985; pp. 59–176. [Google Scholar]
- Ruban, A.V.; Skriver, H.L. Calculated surface segregation in transition metal alloys. Comput. Mater. Sci. 1999, 15, 119–143. [Google Scholar] [CrossRef]
- Wang, Y.; Perdew, J.P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 1991, 44, 298–307. [Google Scholar] [CrossRef]
Poly(C13H8OS–H) | −20 | −15 | −10 | −5 | −2.5 | 0 | 2.5 | 5 |
---|---|---|---|---|---|---|---|---|
Electron density | 2.334 | 6.625 | 9.423 | 29.462 | 8.925 | 4.011 | 2.629 | 4.151 |
d(Å) | 6 | 9 | 12 | 15 |
---|---|---|---|---|
T(K) | 504 < T < 558 | 504 < T < 564 | 504 < T < 564 | 504 < T < 564 |
Eg(eV) | 1.646 | 1.675 | 1.675 | 1.675 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, Q.-T.; Tran, T.-T.-D.; Nguyen, T.-C.; Nguyen, T.V.; Nguyen, H.; Vinh, P.V.; Nguyen-Trong, D.; Dinh Duc, N.; Nguyen-Tri, P. DFT Prediction of Factors Affecting the Structural Characteristics, the Transition Temperature and the Electronic Density of Some New Conjugated Polymers. Polymers 2020, 12, 1207. https://doi.org/10.3390/polym12061207
Vu Q-T, Tran T-T-D, Nguyen T-C, Nguyen TV, Nguyen H, Vinh PV, Nguyen-Trong D, Dinh Duc N, Nguyen-Tri P. DFT Prediction of Factors Affecting the Structural Characteristics, the Transition Temperature and the Electronic Density of Some New Conjugated Polymers. Polymers. 2020; 12(6):1207. https://doi.org/10.3390/polym12061207
Chicago/Turabian StyleVu, Quoc-Trung, Thi-Thuy-Duong Tran, Thuy-Chinh Nguyen, Thien Vuong Nguyen, Hien Nguyen, Pham Van Vinh, Dung Nguyen-Trong, Nguyen Dinh Duc, and Phuong Nguyen-Tri. 2020. "DFT Prediction of Factors Affecting the Structural Characteristics, the Transition Temperature and the Electronic Density of Some New Conjugated Polymers" Polymers 12, no. 6: 1207. https://doi.org/10.3390/polym12061207
APA StyleVu, Q. -T., Tran, T. -T. -D., Nguyen, T. -C., Nguyen, T. V., Nguyen, H., Vinh, P. V., Nguyen-Trong, D., Dinh Duc, N., & Nguyen-Tri, P. (2020). DFT Prediction of Factors Affecting the Structural Characteristics, the Transition Temperature and the Electronic Density of Some New Conjugated Polymers. Polymers, 12(6), 1207. https://doi.org/10.3390/polym12061207