High-Performance Polymer Dispersed Liquid Crystal Enabled by Uniquely Designed Acrylate Monomer
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of A0DA and A3DA
2.3. Sample Preparation
2.4. Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Oh, S.-W.; Baek, J.-M.; Heo, J.; Yoon, T.H. Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film. Dye. Pigment. 2016, 134, 36–40. [Google Scholar] [CrossRef]
- Geis, M.; Lyszczarz, T.M.; Osgood, R.M.; Kimball, B.R. 30 to 50 ns liquid-crystal optical switches. Opt. Express 2010, 18, 18886–18893. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.-G.; Erdmann, J.H.; Doane, J.W. Response times and voltages for PDLC light shutters. Liq. Cryst. 1989, 5, 1453–1465. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, J.; Liu, Y.; Gao, H.; Zhuang, S. Electrically tunable two-dimensional holographic polymer-dispersed liquid crystal grating with variable period. Opt. Commun. 2017, 392, 128–134. [Google Scholar] [CrossRef]
- Chen, G.; Ni, M.; Peng, H.; Huang, F.; Liao, Y.; Wang, M.-K.; Zhu, J.; Roy, V.A.L.; Xie, X. Photoinitiation and Inhibition under Monochromatic Green Light for Storage of Colored 3D Images in Holographic Polymer-Dispersed Liquid Crystals. ACS Appl. Mater. Interf. 2017, 9, 1810–1819. [Google Scholar] [CrossRef]
- Sheraw, C.; Zhou, L.; Huang, J.R.; Gundlach, D.J.; Jackson, T.N.; Kane, M.G.; Hill, I.G.; Hammond, M.S.; Campi, J.; Greening, B.K.; et al. Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Appl. Phys. Lett. 2002, 80, 1088–1090. [Google Scholar] [CrossRef]
- Cong, S.; Cao, Y.; Fang, X.; Wang, Y.; Liu, Q.; Gui, H.; Shen, C.; Cao, X.; Kim, E.S.; Zhou, C. Carbon Nanotube Macroelectronics for Active Matrix Polymer-Dispersed Liquid Crystal Displays. ACS Nano 2016, 10, 10068–10074. [Google Scholar] [CrossRef]
- Mach, P.; Rodriguez, S.J.; Nortrup, R.; Wiltzius, P.; Rogers, J.A. Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors. Appl. Phys. Lett. 2001, 78, 3592–3594. [Google Scholar] [CrossRef]
- Kashima, M.; Cao, H.; Liu, H.J.; Meng, Q.Y.; Wang, D.; Li, F.S.; Yang, H. Effects of the chain length of cross-linking agents on the electro-optical properties of polymer dispersed liquid crystal films. Liq. Cryst. 2010, 37, 339–343. [Google Scholar] [CrossRef]
- Sahraoui, A.H.; Delenclos, S.; Longuemart, S.; Dadarlat, D. Heat transport in polymer-dispersed liquid crystals underelectric field (Report). J. Appl. Phys. 2011, 110, 033510. [Google Scholar] [CrossRef]
- Hikmet, R.A.M.; Kemperman, H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature 1998, 392, 476–479. [Google Scholar] [CrossRef]
- Yang, H.; Mishima, K.; Matsuyama, K.; Hayashi, K.-I.; Kikuchi, H.; Kajiyama, T. Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites. Appl. Phys. Lett. 2003, 82, 2407–2409. [Google Scholar] [CrossRef]
- Natarajan, L.V.; Shepherd, C.K.; Brandelik, D.M.; Sutherland, R.L.; Chandra, S.; Tondiglia, V.P.; Tomlin, D.; Bunning, T.J. Switchable Holographic Polymer-Dispersed Liquid Crystal Reflection Gratings Based on Thiol−Ene Photopolymerization. Chem. Mater. 2003, 15, 2477–2484. [Google Scholar] [CrossRef]
- Mucha, M. Polymer as an important component of blends and composites with liquid crystals. Prog. Polym. Sci. 2003, 28, 837–873. [Google Scholar] [CrossRef]
- Doane, J.W. Liquid Crystals. Applications and Uses; Bahadur, B., Ed.; World Scientific: Singapore, 1992. [Google Scholar]
- Doane, J.W.; Vaz, N.A.; Wu, B.-G.; Žumer, S. Field controlled light scattering from nematic microdroplets. Appl. Phys. Lett. 1986, 48, 269–271. [Google Scholar] [CrossRef]
- Crawford, G.P.; Zumer, S. Liquid Crystals in Complex Geometries. Adv. Mater. 1996, 9, 996–997. [Google Scholar]
- Fergasen, L. Encapsulated Liquid Crystal and Method. U.S. Patent 4,435,047, 1984. [Google Scholar]
- Doane, J.W.; Chidichimo, G.; Vaz, N.A. Light Modulating Material Comprising a Liquid Crystal Dispersion in a Plastic Matrix. U.S. Patent 4,688,900, 1987. [Google Scholar]
- Sun, Y.; Zhang, C.; Zhou, L.; Fang, H.; Huang, J.; Ma, H.; Zhang, Y.; Yang, J.; Zhang, L.-Y.; Song, P.; et al. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films. Molecules 2016, 22, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellahi, M.; Liu, F.; Song, P.; Gao, Y.; Rafique, M.Y.; Khan, D.F.; Cao, H.; Yang, H. Characterization and Morphology of Polymer-Dispersed Liquid Crystal Films. Soft Mater. 2014, 12, 339–345. [Google Scholar] [CrossRef]
- Kovalchuk, A.V.; Kurik, M.V.; Lavrentovich, O.D.; Sergan, V.V. Structural transformations in nematic drops located in an external electric-field. Sov. Phys. JETP 1988, 67, 1065–1073. [Google Scholar]
- Kovalchuk, A.V.; Lavrentovich, O.D.; Sergan, V.V. Kenetic of electrooptical effects in drops of nematic with different structure. Sov. Tech. Phys. Lett. 1989, 15, 529–533. [Google Scholar]
- Srivastava, J.K.; Singh, R.K.; Dhar, R.; Singh, S. Thermal and morphological studies of liquid crystalline materials dispersed in a polymer matrix. Liq. Cryst. 2011, 38, 849–859. [Google Scholar] [CrossRef]
- Perju, E.; Marin, L.; Grigoras, V.C.; Bruma, M. Thermotropic and optical behaviour of new PDLC systems based on a polysulfone matrix and a cyanoazomethine liquid crystal. Liq. Cryst. 2011, 38, 893–905. [Google Scholar] [CrossRef]
- Cho, Y.; Kawakami, Y. High performance holographic polymer dispersed liquid crystal systems using multi-functional acrylates and siloxane-containing epoxides as matrix components. Appl. Phys. A 2006, 83, 365–375. [Google Scholar] [CrossRef]
- Kim, S.H.; Heo, C.P.; Park, K.S.; Kim, B.K. Effect of prepolymer structure on the electro-optic performance of polymer dispersed liquid crystals. Polym. Int. 1998, 46, 143–149. [Google Scholar] [CrossRef]
- Li, W.; Cao, H.; Kashima, M.; Liu, F.; Cheng, Z.; Yang, Z.; Zhu, S.; Yang, H. Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 2090–2099. [Google Scholar] [CrossRef]
- Tao, H.; Zhang, J.; Wang, X.; Gao, J. Phase separation and polymer crystallization in a poly(4-methyl-1-pentene)–dioctylsebacate–dimethylphthalate system via thermally induced phase separation. J. Polym. Sci. Part B Polym. Phys. 2006, 45, 153–161. [Google Scholar] [CrossRef]
- Miyamoto, A.; Kikuchi, H.; Kobayashi, S.; Morimura, Y.; Kajiyama, T. Dielectric property-electrooptical effect relationships of polymer/liquid-crystal composite films. Macromolecules 1991, 24, 3915–3920. [Google Scholar] [CrossRef]
- Kikuchi, H.; Usui, F.; Kajiyama, T. Control of Phase-Separated Structure in (Polymer/Liquid Crystal) Composite Films and Their Electro-Optical Switching Characteristics. Polym. J. 1996, 28, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Kajiyama, T.; Miyamoto, A.; Kikuchi, H.; Morimura, Y. Aggregation states and electro-optical properties based on light scattering of polymer/ (liquid crystal) composite films. Chem. Lett. 1989, 18, 813–816. [Google Scholar] [CrossRef]
- Liu, J.-H.; Wu, F.-T. Synthesis of photoisomeric azobenzene monomers and model compound effect on electric-optical properties in PDLC films. J. Appl. Polym. Sci. 2005, 97, 721–732. [Google Scholar] [CrossRef]
- Higgins, D.A.; Hall, J.E.; Xie, A. Optical microscopy studies of dynamics within individual polymer-dispersed liquid crystal droplets. Acc. Chem. Res. 2005, 38, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Lovinger, A.J.; Amundson, K.R.; Davis, D.D. Morphological Investigation of UV-Curable Polymer-Dispersed Liquid-Crystal (PDLC) Materials. Chem. Mater. 1994, 6, 1726–1736. [Google Scholar] [CrossRef]
- Jayoti, D.; Malik, P.; Singh, A. Analysis of morphological behavior and electro-optical properties of silica nanoparticles doped polymerdispersed liquid crystal composites. J. Mol. Liq. 2017, 225, 456–461. [Google Scholar] [CrossRef]
- Kim, J.; Han, J.I. Effect of cell gap on electro-optical properties of polymer dispersed liquid crystal lens for smart electronic glasses. Electron. Mater. Lett. 2014, 10, 857–861. [Google Scholar] [CrossRef]
- Chen, C.-C. Low power consumption and high-contrast light scattering based on polymer-dispersed liquid crystals doped with silver-coated polystyrene microspheres. Opt. Express 2016, 24, 29963. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y. Low driving voltage ITO doped polymer-dispersed liquid crystal film and reverse voltage pulse driving method. Appl. Opt. 2017, 56, 8159. [Google Scholar] [CrossRef]
- Liu, F.; Cao, H.; Mao, Q.; Song, P.; Yang, H. Effects of monomer structure on the morphology of polymer networks and the electro-optical properties of polymer-dispersed liquid crystal films. Liq. Cryst. 2012, 39, 419–424. [Google Scholar] [CrossRef]
- Schulte, M.D.; Clarson, S.J.; Natarajan, L.V.; Tomlin, D.W.; Bunning, T.J. The effect of fluorine-substituted acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystals. Liq. Cryst. 2000, 27, 467–475. [Google Scholar] [CrossRef]
- Yuan, Y.; Fan, F.; Zhao, C.; Kwok, H.-S.; Schadt, M. Low-driving-voltage, polarizer-free, scattering-controllable liquid crystal device based on randomly patterned photo-alignment. Opt. Lett. 2020, 45, 3697–3700. [Google Scholar] [CrossRef]
- Yoon, W.; Choi, Y.; Lim, S.; Koo, J.; Yang, S.; Jung, D.; Kang, S.; Jeong, K.-U. A Single-Step Dual Stabilization of Smart Window by the Formation of Liquid Crystal Physical Gels and the Construction of Liquid Crystal Chambers. Adv. Funct. Mater. 2019, 30. [Google Scholar] [CrossRef]
- Abdulhalim, I.; Madhuri, P.L.; Diab, M.; Mokari, T. Novel easy to fabricate liquid crystal composite with potential for electrically or thermally controlled transparency windows. Opt. Express 2019, 27, 17387–17401. [Google Scholar] [CrossRef] [PubMed]
- Koduru, H.K.; Marino, L.; Scaramuzza, N. Electro-optics of PDLC films doped with WO3 nanoparticles. In AIP Conference Proceedings 2075; AIP Publishing: College Park, MD, USA, 2019; p. 020018. [Google Scholar]
- Wu, Y.; Cao, H.; Duan, M.; Li, E.; Wang, H.; Yang, Z.; Wang, N.; He, W. Effects of a chemically modified multiwall carbon nanotubes on electro-optical properties of PDLC films. Liq. Cryst. 2017, 45, 1023–1031. [Google Scholar] [CrossRef]
- Zhou, L.; Ma, H.; Han, C.; Hu, W.; Zhang, S.; Zhang, L.; Yang, H. A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film. RSC Adv. 2018, 8, 21690–21698. [Google Scholar] [CrossRef] [Green Version]
- Oh, N.-S.; Shin, Y.-H.; Kang, H.-Y.; Kwon, S.-B. High performance dye-doped emulsion type PDLC for transmittance variable devices. Mol. Cryst. Liq. Cryst. 2017, 644, 137–144. [Google Scholar] [CrossRef]
- Kizhakidathazhath, R.; Higuchi, H.; Okumura, Y.; Kikuchi, H. Effect of polymer backbone flexibility on blue phase liquid crystal stabilization. J. Mol. Liq. 2018, 262, 175–179. [Google Scholar] [CrossRef]
- Jeong, E.H. Memory effect of polymer dispersed liquid crystal by hybridization with nanoclay. Express Polym. Lett. 2010, 4, 39–46. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Gou, F.; Peng, F.; Wu, S.-T. Hysteresis-free and submillisecond-response polymer network liquid crystal. Opt. Express 2016, 24, 14793. [Google Scholar] [CrossRef]
- Amundson, K.; van Blaaderen, A.; Wiltzius, P. Morphology and electro-optic properties of polymer-dispersed liquid-crystal films. Phys. Rev. E 1997, 55, 1646–1654. [Google Scholar] [CrossRef] [Green Version]
- Nicoletta, F.P.; Chidichimo, G.; Cupelli, D.; de Filpo, G.; de Benedittis, M.; Gabriele, B.; Salerno, G.; Fazio, A. Electrochromic Polymer-Dispersed Liquid-Crystal Film: A New Bifunctional Device. Adv. Funct. Mater. 2005, 15, 995–999. [Google Scholar] [CrossRef]
- Amudson, K. Electro-optic properties of a polymer-dispersed liquid-crystal film: Temperature dependence and phase behavior. Phys. Rev. E 1996, 53, 2412–2422. [Google Scholar] [CrossRef]
- Kizhakidathazhath, R.; Higuchi, H.; Okumura, Y.; Kikuchi, H. Weak Anchoring Interface Inducing Acrylate Copolymer Designs for High-Performance Polymer-Stabilized Blue Phase Liquid Crystal Displays. Chemistry 2017, 2, 6728–6731. [Google Scholar] [CrossRef]
- Rijeesh, K.; Higuchi, H.; Okumura, Y.; Yamamoto, J.; Kikuchi, H. Liquid crystal anchoring transitions and weak anchoring interface formation at surfaces created by uniquely designed acrylate copolymers. Polymer 2017, 116, 447–451. [Google Scholar] [CrossRef]
Sample Name | E7 (80 wt%), DMPAP (0.8 wt%) | ||
---|---|---|---|
A3DA (wt%) | HDDA (wt%) | TMHA | |
R (Std.) | - | 9.6 | 9.6 |
A | 11.2 | 8 | - |
B | 9.6 | 9.6 | - |
C | 8.8 | 10.4 | - |
D | 8.0 | 11.2 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kizhakidathazhath, R.; Nishikawa, H.; Okumura, Y.; Higuchi, H.; Kikuchi, H. High-Performance Polymer Dispersed Liquid Crystal Enabled by Uniquely Designed Acrylate Monomer. Polymers 2020, 12, 1625. https://doi.org/10.3390/polym12081625
Kizhakidathazhath R, Nishikawa H, Okumura Y, Higuchi H, Kikuchi H. High-Performance Polymer Dispersed Liquid Crystal Enabled by Uniquely Designed Acrylate Monomer. Polymers. 2020; 12(8):1625. https://doi.org/10.3390/polym12081625
Chicago/Turabian StyleKizhakidathazhath, Rijeesh, Hiroya Nishikawa, Yasushi Okumura, Hiroki Higuchi, and Hirotsugu Kikuchi. 2020. "High-Performance Polymer Dispersed Liquid Crystal Enabled by Uniquely Designed Acrylate Monomer" Polymers 12, no. 8: 1625. https://doi.org/10.3390/polym12081625
APA StyleKizhakidathazhath, R., Nishikawa, H., Okumura, Y., Higuchi, H., & Kikuchi, H. (2020). High-Performance Polymer Dispersed Liquid Crystal Enabled by Uniquely Designed Acrylate Monomer. Polymers, 12(8), 1625. https://doi.org/10.3390/polym12081625