Some Properties of Composite Drone Blades Made from Nanosilica Added Epoxidized Natural Rubber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Properties of the Samples
2.2. Accelerated Aging Test of the Samples
2.3. Mechanical Properties of the Samples
2.4. Flexural Strength and Thermal Properties of the Samples
3. Results and Discussion
3.1. FTIR Analysis of the Samples
3.2. Mechanical Properties of Nanocomposite Samples
3.3. Impact Properties of Nanocomposite-Fiber Samples
3.4. Flexural Strength of Nanocomposite-Fiber Samples
3.5. Hardness of Nanocomposite-Fiber Samples
3.6. Microscopic Evaluation of Nanocomposite-Fiber Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Jaiganesh, V.; Manivannan, S. Numerical analysis and simulation of nylon composite propeller for aircraft. Procedia Eng. 2014, 97, 1079–1088. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, J.; Jensen, M.; Andreasen, J.H. Thermo-mechanical characterization of in-plane properties for CSM E-glass epoxy polymer composite materials—Part. 1: Thermal and chemical strain. Polym. Test. 2013, 32, 1350–1357. [Google Scholar] [CrossRef]
- Jakobsen, J.; Jensen, M.; Andreasen, J.H. Thermo-mechanical characterization of in-plane properties for CSM E-glass epoxy polymer composite materials—Part. 2: Young’s modulus. Polym. Test. 2013, 32, 1417–1422. [Google Scholar] [CrossRef]
- Holmes, M. Aerospace looks to composites for solutions. Reinf. Plast. 2017, 61, 237–241. [Google Scholar] [CrossRef]
- Trappe, V.; Gunzel, S.; Jaunich, M. Correlation between crack propagation rate and cure process of epoxy resins. Polym. Test. 2012, 31, 654–659. [Google Scholar] [CrossRef]
- Chuayjuljit, S.; Soatthiyanon, N.; Potiyaraj, P. Polymer blends of epoxy resin and epoxidized natural rubber. J. Appl. Polym. Sci. 2006, 102, 452–459. [Google Scholar] [CrossRef]
- Butta, E.; Levita, G.; Marchetti, A.; Lazzeri, A. Morphology and mechanical properties of amine-terminated butadiene-acrylonitrile/epoxy blends. Polym. Eng. Sci. 1986, 26, 63–73. [Google Scholar] [CrossRef]
- Mathew, V.S.; Jyotishkumar, P.; George, S.C.; Gopalakrishnan, P.; Delbreilh, L.; Saiter, J.M.; Saikia, P.J.; Thomas, S. High performance HTLNR/epoxy blend-Phase morphology and thermo-mechanical properties. J. Appl. Polym. Sci. 2011, 125, 38–79. [Google Scholar] [CrossRef]
- Guadagno, L.; Vertuccio, L.; Sorrentino, A.; Raimondo, M.; Naddeo, C.; Vittoria, V.; Iannuzzo, G.; Calvi, E.; Russo, S. Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon 2009, 47, 2419–2430. [Google Scholar] [CrossRef]
- Jin, F.-L.; Park, S.-J. Interfacial toughness properties of trifunctional epoxy resins/calcium carbonate nanocomposites. Mater. Sci. Eng. A 2008, 475, 190–193. [Google Scholar] [CrossRef]
- Singh, L.P.; Karade, S.; Bhattacharyya, S.; Yousuf, M.M.; Ahalawat, S. Beneficial role of nanosilica in cement based materials—A review. Constr. Build. Mater. 2013, 47, 1069–1077. [Google Scholar] [CrossRef]
- Jantanasakulwong, K.; Leksawasdi, N.; Seesuriyachan, P.; Wongsuriyasak, S.; Techapun, C.; Ougizawa, T. Reactive blending of thermoplastic starch, epoxidized natural rubber and chitosan. Eur. Polym. J. 2016, 84, 292–299. [Google Scholar] [CrossRef]
- Kelly, P. Epoxy vinyl ester and other resins in chemical process equipment. Reinforc. Plast. Durab. 1999, 282–293. [Google Scholar] [CrossRef]
- Hong, S.-G.; Chan, C.-K. The curing behaviors of the epoxy/dicyanamide system modified with epoxidized natural rubber. Thermochim. Acta 2004, 417, 99–106. [Google Scholar] [CrossRef]
- Lanna, A.; Pithaksareetham, N.; Suchat, S. Effect of loading of epoxidized natural. rubber on impact strength of UAV applications. In Proceedings of the Third Asia Pacific Rubber Conference (APRC), Surat Thani, Thailand, 16–17 November 2017; pp. 7–11. [Google Scholar]
- McAndrew, I.R.; Navarro, E.; Witcher, K. Propeller Design Requirements for Quadcopters Utilizing Variable Pitch Propellers. Int. J. Mater. Mech. Manuf. 2018, 6, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Mlyniec, A.; Korta, J.; Kudelski, R.; Uhl, T. The influence of the laminate thickness, stacking sequence and thermal aging on the static and dynamic behavior of carbon/epoxy composites. Compos. Struct. 2014, 118, 208–216. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, J.; Zhou, L.; Lu, M.; Liang, W.; Wang, Z. Effect of fiber surface modification on water absorption and hydrothermal aging behaviors of GF/pCBT composites. Compos. Part B Eng. 2015, 82, 84–91. [Google Scholar] [CrossRef]
- D’Alpino, P.H.P.; Vismara, M.V.G.; Mello, L.M.D.M.; Di Hipolito, V.; González, A.; Graeff, C.F.D.O. Resin composite characterizations following a simplified protocol of accelerated aging as a function of the expiration date. J. Mech. Behav. Biomed. Mater. 2014, 35, 59–69. [Google Scholar] [CrossRef]
- Barbosa, A.P.C.; Fulco, A.P.P.; Guerra, É.S.S.; Arakaki, F.K.; Tosatto, M.; Costa, M.C.B.; Melo, J.D.D. Accelerated aging effects on carbon fiber/epoxy composites. Compos. Part B Eng. 2017, 110, 298–306. [Google Scholar] [CrossRef]
- Saito, T.; Klinklai, W.; Kawahara, S. Characterization of epoxidized natural rubber by 2D NMR spectroscopy. Polymer 2007, 48, 750–757. [Google Scholar] [CrossRef]
- Jafari, V.; Allahverdi, A. Synthesis and characterization of colloidal nanosilica via an ultrasound assisted route based on alkali leaching of silica fume. Int. J. Nanosci. Nanotechnol. 2014, 10, 145–152. [Google Scholar]
- Suchat, S.; Yingprasert, W. ECO-Adhesive from Modified Natural Rubber for Wood Applications. Adv. Mater. Res. 2013, 844, 182–185. [Google Scholar] [CrossRef]
- Rahmani, H.; Najafi, S.H.M.; Saffarzadeh-Matin, S.; Ashori, A. Mechanical properties of carbon fiber/epoxy composites: Effects of number of plies, fiber contents, and angle-ply layers. Polym. Eng. Sci. 2013, 54, 2676–2682. [Google Scholar] [CrossRef]
Formula | Tensile Strength (MPa) | ||||
---|---|---|---|---|---|
Non-Weathering | 168 h-Weathering | 336 h-Weathering | |||
UVA | UVB | UVA | UVB | ||
Epoxy resin | 50.22 (0.56) | 72.95 (0.21) | 73.50 (0.11) | 69.34 (0.72) | 70.34 (2.45) |
EP+ENR-50 | 47.61 (0.82) | 76.71 (0.33) | 77.21 (0.29) | 55.37 (0.13) | 57.79 (0.34) |
EP+ENR+Nanosilica | 42.19 (0.83) | 57.32 (0.24) | 57.50 (0.17) | 50.21 (0.15) | 50.48 (0.65) |
Formula | Impact Strength (kJ/m2) | ||||
---|---|---|---|---|---|
Non-Weathering | 168 h-Weathering | 336 h-Weathering | |||
UVA | UVB | UVA | UVB | ||
Epoxy resin | 8.62 (0.18) | 2.48 (1.29) | 4.42 (0.30) | 2.31 (0.55) | 2.28 (0.42) |
EP+ENR-50 | 15.06 (0.18) | 11.21 (0.43) | 5.21 (0.33) | 7.64 (0.87) | 3.09 (0.28) |
EP+ENR+Nanosilica | 15.07 (0.76) | 12.86 (0.40) | 5.21 (0.57) | 10.23 (0.13) | 4.43 (0.91) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchat, S.; Lanna, A.; Chotikhun, A.; Hiziroglu, S. Some Properties of Composite Drone Blades Made from Nanosilica Added Epoxidized Natural Rubber. Polymers 2020, 12, 1293. https://doi.org/10.3390/polym12061293
Suchat S, Lanna A, Chotikhun A, Hiziroglu S. Some Properties of Composite Drone Blades Made from Nanosilica Added Epoxidized Natural Rubber. Polymers. 2020; 12(6):1293. https://doi.org/10.3390/polym12061293
Chicago/Turabian StyleSuchat, Sunisa, Aunnuda Lanna, Aujchariya Chotikhun, and Salim Hiziroglu. 2020. "Some Properties of Composite Drone Blades Made from Nanosilica Added Epoxidized Natural Rubber" Polymers 12, no. 6: 1293. https://doi.org/10.3390/polym12061293
APA StyleSuchat, S., Lanna, A., Chotikhun, A., & Hiziroglu, S. (2020). Some Properties of Composite Drone Blades Made from Nanosilica Added Epoxidized Natural Rubber. Polymers, 12(6), 1293. https://doi.org/10.3390/polym12061293