Optical Trajectory Manipulations Using the Self-Written Waveguide Technique
Abstract
:1. Introduction
2. Self-Written Waveguide Evolution
3. Results and Discussion
3.1. Liquid Photopolymer
3.2. Solid Photopolymer
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sarkisov, S.S.; Grimalsky, V.; Curley, M.J.; Adamovsky, G.; Martin, C. Connection of two-dimensional optic fiber arrays using optical beam self-trapping in photocurable media. Proc. SPIE 2001, 4455, 107–118. [Google Scholar]
- Bachelot, R.; Ecoffet, C.; Deloeil, D.; Royer, P.; Lougnot, D.J. Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization. Appl. Opt. 2001, 40, 5860–5871. [Google Scholar] [CrossRef] [PubMed]
- Jisha, C.P.; Kishore, V.C.; John, B.M.; Kuriakose, V.C.; Porsezian, K.; Kartha, C.S. Self-written waveguide in methylene blue sensitized poly(vinyl alcohol)/acrylamide photopolymer material. Appl. Opt. 2008, 47, 6502–6507. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, T.; Roman, J.; Takahashi, Y.; Wang, W.V.; Inao, M. Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates. In Proceedings of the 50th Electronic Components and Technology Conference (Cat. No.00CH37070), Las Vegas, NV, USA, 21–24 May 2000; pp. 962–969. [Google Scholar] [CrossRef]
- Hirose, N.; Ibaragi, O. Optical solder effects of self-written waveguides in optical circuit devices coupling. In Proceedings of the 52nd Electronic Components and Technology Conference 2002. (Cat. No.02CH37345), San Diego, CA, USA, 28–31 May 2002; pp. 268–275. [Google Scholar] [CrossRef]
- Sugihara, O.; Tsuchie, H.; Endo, H.; Okamoto, N.; Yamashita, T.; Kagami, M.; Kaino, T. Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections. IEEE Photonics Technol. Lett. 2004, 16, 804–806. [Google Scholar] [CrossRef]
- Dorkenoo, K.; Crégut, O.; Mager, L.; Gillot, F.; Carre, C.; Fort, A. Quasi-solitonic behaviour of self-written waveguides created by photopolymerization. Opt. Lett. 2002, 27, 1782–1784. [Google Scholar] [CrossRef]
- Suzuki, N.; Tomita, Y. Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%. Appl. Opt. 2004, 43, 2125–2129. [Google Scholar] [CrossRef]
- Moran, J.M.; Kaminow, I.P. Properties of holographic gratings photoinduced in polymethyl methacrylate. Appl. Opt. 1973, 12, 1964–1970. [Google Scholar] [CrossRef]
- Kewitsch, A.S.; Yariv, A. Self-focusing and self-trapping of optical beams upon photopolymerization. Opt. Lett. 1996, 21, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Odian, G. Principles of Polymerization, 4th ed.; Wiley: New York, NY, USA, 2004. [Google Scholar]
- Tolstik, E.; Kashin, O.; Matusevich, A.; Matusevich, V.; Kowarschik, R.; Matusevich, Y.I.; Krul, L.P. Non-local response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone. Opt. Express 2008, 16, 11253–11258. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.H.; Kim, J.; Lee, L.P. Biologically inspired artificial compound eyes. Science 2006, 312, 557–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Majumdar, A.; Cho, J.S. Fabrication and evaluation of hybrid silica/polymer optical fiber sensors for large strain measurement. Trans. Inst. Meas. Control 2009, 31, 247–257. [Google Scholar] [CrossRef]
- Qi, Y.; Gleeson, M.R.; Guo, J.; Gallego, S.; Sheridan, J.T. Quantitative comparison of five different photosensitizers for use in a photopolymer. Phys. Res. Int. 2012, 2012, 975948. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.; Peters, K. Finite element simulation of self-writing waveguide formation through photopolymerization. J. Lightwave Technol. 2009, 27, 5529–5536. [Google Scholar] [CrossRef]
- Sukhorukov, A.A.; Kivshar, Y. Self-trapped optical beams: Spatial solitons. Pramana-Bangalore 2001, 57, 1079–1096. [Google Scholar] [CrossRef]
- Shoji, S.; Kawata, S.; Sukhorukov, A.A.; Kivshar, Y. Self-written waveguides in photopolymerizable regins. Opt. Lett. 2002, 27, 185–187. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Qi, Y.; Malallah, R.; Sheridan, J.T. Modeling the nonlinear photoabsorptive behavior during self-written waveguide formation in a photopolymer. J. Opt. Soc. Am. B 2015, 32, 912–922. [Google Scholar] [CrossRef]
- Guo, J.; Liu, S.; Gleeson, M.R.; Sheridan, J.T. Study of photosensitizer diffusion in a photopolymer material for holographic applications. Opt. Eng. 2011, 50, 015801. [Google Scholar] [CrossRef]
- Li, H.; Qi, Y.; Ryle, J.P.; Sheridan, J.T. Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material. Appl. Opt. 2014, 53, 8086–8094. [Google Scholar] [CrossRef]
- Gleeson, M.R.; Kelly, J.V.; Close, C.E.; O’Neill, F.T.; Sheridan, J.T. The effects of absorption and inhibition during grating formation in photopolymer materials. J. Opt. Soc. Am. B 2006, 23, 2079–2088. [Google Scholar] [CrossRef]
- Qi, Y.; Li, H.; Fouassier, J.P.; Lalevée, J.; Sheridan, J.T. Comparison of a new photosensitizer with Erythrosin B in an AA/PVA based photopolymer material. Appl. Opt. 2014, 53, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Siegman, A.E. Lasers; University Science: Mill Valley, CA, USA, 1986. [Google Scholar]
- Gleeson, M.R.; Liu, S.; O’Duill, S.; Sheridan, J.T. Examination of the photoinitiation processes in photopolymer materials. J. Appl. Phys. 2008, 104, 064917. [Google Scholar] [CrossRef]
- Kashin, O.; Tolstik, E.; Matusevich, V.; Kowarschik, R. Numerical investigation of the (1 + 1)D self-trapping of laser beams in polymeric films based on polymethylmethacrylate and phenanthrenequinone. J. Opt. Soc. Am. B 2009, 26, 2152–2156. [Google Scholar] [CrossRef]
- Tsao, C. Optical Fibre Waveguide Analysis; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Kagami, M.; Yamashita, T.; Ito, H. Light-induced self-written three-dimensional optical waveguide. Appl. Phys. Lett. 2001, 79, 1079–1081. [Google Scholar] [CrossRef]
- Kewitsch, A.S.; Yariv, A. Nonlinear optical properties of photoresists for projection lithography. Appl. Phys. Lett. 1996, 68, 455–457. [Google Scholar] [CrossRef] [Green Version]
- Monro, T.M.; Poladian, L.; Sterke, C.M. Analysis of self-written waveguides in photopolymers and photosensitive materials. Phys. Rev. E 1998, 57, 1104–1113. [Google Scholar] [CrossRef]
- Kashin, A.M.; Monro, T.M. Exploration of self-writing and photosensitivity inion-exchanged waveguides. J. Opt. Soc. Am. B 2003, 20, 1317–1325. [Google Scholar]
- Malallah, R.; Cassidy, D.; Muniraj, I.; Ryle, J.P.; Healy, J.J.; Sheridan, J.T. Self-written waveguides in photopolymer. Appl. Opt. 2018, 57, E80–E88. [Google Scholar] [CrossRef]
- Malallah, R.; Li, H.; Muniraj, I.; Cassidy, D.; Al-attar, N.; Healy, J.J.; Sheridan, J.T. Controlling the trajectories of self-written waveguides in photopolymer. J. Opt. Soc. Am. B 2018, 35, 2046–2056. [Google Scholar] [CrossRef]
- Malallah, R.; Li, H.; Kelly, D.P.; Sheridan, J.T. A review of hologram storage and self-written waveguides formation in photopolymer media. Polymers 2017, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- Ljungström, A.M.; Monro, T.M. Light-induced self-writing effects in bulk chalcogenide glass. J. Lightwave Technol. 2002, 20, 78–85. [Google Scholar] [CrossRef]
- Murphy, E.J. Integrated Optical Circuits and Components: Design and Applications; Marcel Dekker Inc.: New York, NY, USA, 1999. [Google Scholar]
- Tolstik, E.; Romanov, O.; Matusevich, V.; Tolstik, A.; Kowarschik, R. Formation of self-trapping waveguides in bulk PMMA media doped with Phenanthrenequinone. Opt. Express 2014, 22, 3228–3233. [Google Scholar] [CrossRef] [PubMed]
- Barthelemy, A.; Maneuf, S.; Froehly, C. Soliton propagation and self-trapping of laser beams by a Kerr optical nonlinearity. Opt. Commun. 1985, 55, 201–206. [Google Scholar] [CrossRef]
- Qi, Y.; Li, H.; Guo, J.; Gleeson, M.R.; Sheridan, J.T. Material response of photopolymer containing four different photosensitizers. Opt. Commun. 2014, 320, 114–124. [Google Scholar] [CrossRef]
- Mitchell, M.; Chen, Z.; Shih, M.; Segev, M. Self-trapping of partially incoherent light. Phys. Rev. Lett. 1996, 77, 490–493. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Sheridan, J.T.; Saravanamuttu, K. Collective dynamics of populations of weakly correlated filaments of incoherent white light. J. Opt. 2013, 14, 035201. [Google Scholar] [CrossRef]
- Svalgaard, M.; Poulsen, C.V.; Bjarklev, A.; Poulsen, O. Direct UV writing of buried single mode channel waveguides in Ge-doped silica films. Electron. Lett. 1994, 30, 1401–1403. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Monro, T.M.; de Sterke, C.M.; Poladian, L. Investigation of waveguide growth in photosensitive germanosilicate glass. J. Opt. Soc. Am. B 1996, 13, 2824–2833. [Google Scholar] [CrossRef]
- Shoji, S.; Kawata, S. Optically-induced growth of fiber patterns into a photopolymerizable resin. Appl. Phys. Lett. 1999, 75, 737–739. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malallah, R.; Cassidy, D.; Wan, M.; Muniraj, I.; Healy, J.J.; Sheridan, J.T. Optical Trajectory Manipulations Using the Self-Written Waveguide Technique. Polymers 2020, 12, 1438. https://doi.org/10.3390/polym12071438
Malallah R, Cassidy D, Wan M, Muniraj I, Healy JJ, Sheridan JT. Optical Trajectory Manipulations Using the Self-Written Waveguide Technique. Polymers. 2020; 12(7):1438. https://doi.org/10.3390/polym12071438
Chicago/Turabian StyleMalallah, Ra’ed, Derek Cassidy, Min Wan, Inbarasan Muniraj, John J. Healy, and John T. Sheridan. 2020. "Optical Trajectory Manipulations Using the Self-Written Waveguide Technique" Polymers 12, no. 7: 1438. https://doi.org/10.3390/polym12071438
APA StyleMalallah, R., Cassidy, D., Wan, M., Muniraj, I., Healy, J. J., & Sheridan, J. T. (2020). Optical Trajectory Manipulations Using the Self-Written Waveguide Technique. Polymers, 12(7), 1438. https://doi.org/10.3390/polym12071438