Recoverable Extensional Flow of Polymer Melts and Its Relevance for Processing
Abstract
:1. Introduction
2. Methods
2.1. Experimental Devices
2.2. Evaluation of Experimental Results
3. Results
3.1. General Features of Recoverable Elongation
3.1.1. Dependence on Experimental Parameters
3.1.2. Dependence on Molecular Structure
3.2. Recoverable Elongation and Its Function in Manufactured Items
3.2.1. Recoverable Elongation of Stretched Films
3.2.2. Shrink Films
3.3. Recoverable Elongation and Extrudate Swell
3.3.1. Entrance Flow
3.3.2. Extrudate Swell
3.3.3. Entrance Flow and Elongational Viscosity
3.3.4. Relevance of Extrudate Swell from Short Dies for Processing
3.3.5. Extrudate Swell and Recoverable Elongation of Dispersed Polymer Melts
Polymers Filled with Rigid Particles
Immiscible Polymer Blends
4. Conclusions
Funding
Conflicts of Interest
References
- Münstedt, H.; Schwarzl, F.R. Deformation and Flow of Polymeric Materials; Springer: Heidelberg, Germany, 2014. [Google Scholar]
- Münstedt, H. Extensional rheology and processing of polymeric materials. Intern. Polym. Process. 2018, 33, 594–618. [Google Scholar] [CrossRef]
- Meissner, J. Dehnungsverhalten von Polyäthylen-Schmelzen. Rheol. Acta 1971, 10, 230–246. [Google Scholar]
- Macosko, C.W. Rheology Principles, Measurements, and Applications; Wiley-VCH: New York, NY, USA, 1994. [Google Scholar]
- Dealy, J.M.; Larson, R.G. Structure and Rheology of Molten Polymers; Hanser: Munich, Germany, 2006. [Google Scholar]
- Meissner, J.; Hostettler, J. A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol. Acta 1994, 33, 1–21. [Google Scholar] [CrossRef]
- Münstedt, H. New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample. J. Rheol. 1979, 23, 421–436. [Google Scholar] [CrossRef]
- Münstedt, H.; Kurzbeck, S.; Egensdörfer, L. Influence of molecular structure on rheological properties of polyethylenes. Part II. Elongational behavior. Rheol. Acta 1998, 37, 21–29. [Google Scholar]
- Münstedt, H. Elastic Behavior of Polymer Melts; Hanser: Munich, Germany, 2019. [Google Scholar]
- Sentmanat, M.L. Miniature universal testing platform: From extensional melt rheology to solid-state deformation behavior. Rheol. Acta 2004, 6, 657–669. [Google Scholar] [CrossRef]
- Bach, A.; Rasmussen, H.; Hassager, O. Extensional viscosity for polymer melts measured in the stretching filament rheometer. J. Rheol. 2003, 47, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Münstedt, H.; Stary, Z. Steady states in extensional flow of strain hardening polymer melts and the uncertainties of their determination. J. Rheol. 2013, 57, 1065–1077. [Google Scholar] [CrossRef]
- Münstedt, H.; Laun, H.M. Elongational behavior of a low density polyethylene melt. II. Transient behavior in constant stretching rate and tensile creep experiments. Comparison with shear data. Temperature dependence of the elongational properties. Rheol. Acta 1979, 18, 492–504. [Google Scholar] [CrossRef]
- Nemoto, N. Viscoelastic properties of narrow distribution polymers. II. Tensile creep studies of polystyrene. Polym. J. 1970, 1, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Münstedt, H. Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution. J. Rheol. 1980, 24, 847–867. [Google Scholar] [CrossRef]
- Auhl, D.; Stange, J.; Münstedt, H.; Krause, B.; Voigt, D.; Lederer, A.; Lappan, U.; Lunkwitz, K. Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 2004, 37, 9465–9472. [Google Scholar] [CrossRef]
- Ito, E.; Horie, T.; Kobayashi, Y. Thermal shrinkage of drawn polystyrene. J. Appl. Polym. Sci. 1978, 22, 3193–3201. [Google Scholar] [CrossRef]
- Shik, W.K. Shrinkage modeling of polyester shrink film. Polym. Eng. Sci. 1994, 34, 1121–1128. [Google Scholar]
- Kang, H.J.; White, J.L. A double bubble tubular film process to produce biaxially oriented poly(p-phenylene sulfide) (PPS) film. Polym. Eng. Sci. 1990, 30, 1228–1236. [Google Scholar]
- Kramer, H.; Meissner, J. Applications of the laser-Doppler-anemometry to polymer flow studies. In Proceedings of the 8th International Congress on Rheology; Springer: Boston, MA, USA, 1980. [Google Scholar]
- Wassner, E.; Schmidt, M.; Münstedt, H. Entry flow of a low-density-polyethylene melt into a slit die: An experimental study by laser-Doppler velocimetry. J. Rheol. 1999, 43, 1339–1353. [Google Scholar] [CrossRef]
- Münstedt, H.; Schmidt, M.; Wassner, E. Stick and slip phenomena during extrusion of polyethylene melts as investigated by laser-Doppler velocimetry. J. Rheol. 2000, 44, 413–427. [Google Scholar] [CrossRef]
- Burghelea, T.I.; Griess, H.J.; Münstedt, H. Comparative investigations of surface instabilities (“sharkskin”) of a linear and a long-chain branched polyethylene. JNNFM 2010, 165, 1093–1104. [Google Scholar] [CrossRef] [Green Version]
- Wassner, E. Strömungsuntersuchungen mit der Laser-Doppler-Anemometrie bei der Extrusion von Polyethylenschmelzen (Flow investigations with the laser-Doppler anemometry during the extrusion of polyethylene melts). Ph.D. Thesis, University Erlangen-Nuremberg, Shaker, Aachen, Germany, 1998. [Google Scholar]
- Meissner, J. Basic parameters, melt rheology, processing and end-use properties of three similar low density polyethylene samples. Pure Appl. Chem. 1975, 42, 551–612. [Google Scholar] [CrossRef] [Green Version]
- Bagley, E.B. End correction in the capillary flow of polyethylene. J. Appl. Phys. 1957, 28, 624–627. [Google Scholar] [CrossRef]
- Cogswell, F.N. Converging flow of polymer melts in extrusion dies. Polym. Eng. Sci. 1972, 12, 64–73. [Google Scholar] [CrossRef]
- Mackay, M.E. The importance of rheological behavior in the additive manufacturing technique material extrusion. J. Rheol. 2018, 62, 1549–1561. [Google Scholar] [CrossRef]
- Münstedt, H. Rheological and Morphological Properties of Dispersed Polymeric Materials; Hanser: Munich, Germany, 2016. [Google Scholar]
- Münstedt, H.; Katsikis, N.; Kaschta, J. Rheological properties of poly(methylmethacrylate)/nanoclay composites as investigated by creep recovery in shear. Macromolecules 2008, 41, 9777–9783. [Google Scholar] [CrossRef]
- Handge, U.A.; Okamoto, K.; Münstedt, H. Recoverable deformation and morphology after uniaxial elongation of a polylstyrene/linear low density polyethylene blend. Rheol. Acta 2007, 46, 1197–1209. [Google Scholar] [CrossRef] [Green Version]
- Stary, Z.; Münstedt, H. Morphology development in PS/LLDPE blends during and after elongational deformation. J. Polym. Sci. Part B 2008, 46, 16–27. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Münstedt, H. Recoverable Extensional Flow of Polymer Melts and Its Relevance for Processing. Polymers 2020, 12, 1512. https://doi.org/10.3390/polym12071512
Münstedt H. Recoverable Extensional Flow of Polymer Melts and Its Relevance for Processing. Polymers. 2020; 12(7):1512. https://doi.org/10.3390/polym12071512
Chicago/Turabian StyleMünstedt, Helmut. 2020. "Recoverable Extensional Flow of Polymer Melts and Its Relevance for Processing" Polymers 12, no. 7: 1512. https://doi.org/10.3390/polym12071512
APA StyleMünstedt, H. (2020). Recoverable Extensional Flow of Polymer Melts and Its Relevance for Processing. Polymers, 12(7), 1512. https://doi.org/10.3390/polym12071512