Potential Synergism between Novel Metal Complexes and Polymeric Brominated Flame Retardants in Polyamide 6.6
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Polymer Composite Compounding
2.3. Fire Testing
2.4. Thermogravimetric and TGA-FTIR Analysis
2.5. Char Analysis
2.6. Synergistic Effectivity
3. Results and Discussion
3.1. Thermogravimetric Behaviour
3.2. Fire Performance
3.3. TGA-FTIR Evolved Gas Analysis
3.4. Char Analyses
3.4.1. FTIR Analysis
3.4.2. XRF Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McAllister, D.L. Brominated Flame Retardants: Current Issues and Future Prospects. In Proceedings of the Flame Retardants ’92, London, UK, 19–20 May 1992; Interscience Communications: London, UK, 1992; pp. 149–155. [Google Scholar]
- Wakelyn, P.J. Advances in Fire Retardant Materials; Horrocks, A.R., Price, D., Eds.; Woodhead Publishing: Cambridge, UK, 2008; pp. 188–212. [Google Scholar]
- Horrocks, A.R. Flame retardant and environmental issues. In Update on Flame Retardant Textiles: State of the Art, Environmental Issues and Innovative Solutions; Alongi, J., Horrocks, A.R., Carosio, F., Malucelli, G., Eds.; Smithers Rapra: Shawbury, UK, 2013; pp. 207–238. [Google Scholar]
- European Chemicals Bureau. European Union Risk Assessment Report for Bis(Pentabromodiphenyl) Ether; European Chemicals Bureau, Office for Official Publications of the European Communities, Luxembourg: 2003. Available online: https://echa.europa.eu/documents/10162/6434698/orats_final_rar_bispentabromophenylether_en.pdf (accessed on 10 July 2020).
- United States Environmental Protection Agency. An Alternatives Assessment for the Flame Retardant Decabromodiphenyl Ether (DecaBDE), Final Report. January 2014. Available online: https://www.epa.gov/sites/production/files/2014-05/documents/decabde_final.pdf (accessed on 10 July 2020).
- 3/227 of 9 February 2017 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Bis(Pentabromophenyl)Ether. The European Parliament and of the Council, 2017.
- Horrocks, A.R. Flame retardant/resistant coatings and laminates. In Advances in Flame Retardant Materials; Horrocks, A.R., Price, D., Eds.; Woodhead Publishing: Cambridge, UK, 2008; pp. 159–187. [Google Scholar]
- de Wit, C.A.; Herzke, D.; Vorkamp, K. Brominated flame retardants in the Arctic environment—Trends and new candidates. Sci. Total Environ. 2010, 408, 2018–2885. [Google Scholar] [CrossRef] [PubMed]
- National Academy of Sciences. Toxicological Risks of Selected Flame-Retardant Chemicals; Sub-Committee on Flame-Retardant Chemicals of the United States National Research Council: Washington, DC, USA; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Chaplin, D.; Brown, S.C. Flamtard—A new range of flame and smoke retardants. In Flame Retardants ’90; Interscience Communications: London, UK, 1990; pp. 114–125. [Google Scholar]
- Cusack, P.A.; Hornsby, P. Zinc Stannate-coated Filler: Novel flame retardant materials and smoke suppressants for polymeric materials. J. Vinyl Addit. Technol. 1999, 5, 21–30. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Smart, G.; Price, D.; Kandola, B. Zinc stannates as alternative synergists in selected flame retardant systems. J. Fire Sci. 2009, 27, 495–521. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Smart, G.; Kandola, B.K.; Holdsworth, A.F.; Price, D. Zinc stannate interactions with flame retardants in polyamides; Part 1: Synergies with organobromine-containing flame retardants in polyamides 6 (PA6) and 6.6 (PA6.6). Polym. Degrad. Stab. 2012, 97, 2503–2510. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Smart, G.; Kandola, B.; Price, D. Zinc stannate interactions with flame retardants in polyamides; Part 2: Potential synergies with non-halogen-containing flame retardants in polyamide 6 (PA6). Polym. Degrad. Stab. 2012, 94, 645–652. [Google Scholar] [CrossRef]
- Holdsworth, A.F.; Horrocks, A.R.; Kandola, B.K.; Price, D. The potential of metal oxalates as novel flame retardants and synergists for engineering polymers. Polym. Degrad. Stab. 2014, 110, 290–297. [Google Scholar] [CrossRef]
- Holdsworth, A.F.; Horrocks, A.R.; Kandola, B.K. Synthesis and thermal analytical screening of metal complexes as potential novel fire retardants in polyamide 6.6. Polym. Degrad. Stab. 2017, 144, 420–433. [Google Scholar] [CrossRef]
- Holdsworth, A.F.; Horrocks, A.R.; Kandola, B.K. Novel metal complexes as potential synergists with phosphorus based flame retardants in polyamide 6.6. Polym. Degrad. Stab. 2020, 179, 109220. [Google Scholar] [CrossRef]
- Weil, E.D.; Levchik, S. Flame Retardants for Plastics and Textiles; Hanser: Munich, Germany, 2009; pp. 88–91. [Google Scholar]
- Holdsworth, A.F. Novel Multifunctional Fire and Smoke Retardants for Engineering Polymers. Ph.D. Thesis, University of Bolton, Bolton, UK, 2014. [Google Scholar]
- Schaffer, M.A.; Marchildon, E.K.; McAuley, K.B.; Cunningham, M.F. Thermal non-oxidative degradation of nylon 6,6. JMS Rev.-Macromol. Chem. Phys. 2000, C40, 233–272. [Google Scholar] [CrossRef]
- Lewin, M.; Weil, E.D. Mechanisms and modes of action in flame retardancy of polymers. In Fire Retardant Materials; Horrocks, A.R., Price, D., Eds.; Woodhead Publishing: Cambridge, UK, 2001; pp. 31–68. [Google Scholar]
- Stec, A.A. Fire toxicity—The elephant in the room? Fire Saf. J. 2017, 19, 79–90. [Google Scholar] [CrossRef]
- El-Mazry, C.; Ben Hassine, M.; Correc, O.; Colin, X. Thermal oxidation kinetics of additive free polyamide 6-6. Polym. Degrad. Stab. 2013, 98, 22–36. [Google Scholar] [CrossRef] [Green Version]
- Horrocks, A.R.; Sitpalan, A.; Kandola, B.K. Design and characterisation of bicomponent polyamide 6 fibres with specific locations of each flame retardant component for enhanced flame retardancy. Polym. Test. 2019, 79, 106041. [Google Scholar] [CrossRef]
- Satchell, D.P.N.; Satchell, R.S. Quantitative aspects of the Lewis acidity of covalent metal halides and their organo derivatives. Chem. Rev. 1969, 69, 251–278. [Google Scholar] [CrossRef]
- Ismaeili, N. Mechanistic Study of Synergism of Inorganic Synergists with Flame Retardants. Ph.D. Thesis, University of Bolton, Bolton, UK, 2019. [Google Scholar]
- Kicko-Walczak, E. Flame retarded halogenated unsaturated polyester resins. Thermal decomposition study. J. Polym. Eng. 2003, 23, 149–161. [Google Scholar] [CrossRef]
Sample | PA66 | Br(BrPS) | Br(BrPBz) | MC* | TGA/DTG (Air) | |||
---|---|---|---|---|---|---|---|---|
Concentration, wt.% | T5% | Tmax, °C | R500, wt.% * | R580, wt.% | ||||
PA66 | 100.0 | 386 | 461 | 11.2 | 3.9 | |||
BrPS | 90.0 | 10.0 | 400 | 430 | 8.1 | 0.5 | ||
BrPBz | 90.0 | 10.0 | 363 | 402 | 10.6 | 1.2 | ||
AlW-BrPS | 85.0 | 10.0 | 5.0 | 374 | 423 | 15.9 (10.9) | 4.4 | |
ZnW-BrPS | 85.0 | 10.0 | 5.0 | 375 | 431 | 20.4 (15.4) | 9.6 | |
SnW-BrPS | 85.0 | 10.0 | 5.0 | 368 | 424 | 20.9 (15.9) | 10.3 | |
AlW-BrPBz | 85.0 | 10.0 | 5.0 | 367 | 405 | 15.1 (10.1) | 4.6 | |
ZnW-BrPBz | 85.0 | 10.0 | 5.0 | 358 | 404 | 26.2 (21.2) | 20.8 | |
SnW-BrPBz | 85.0 | 10.0 | 5.0 | 357 | 410 | 20.5 (15.5) | 9.2 |
Sample | Composition (%) | Flammability Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PA66 | MC * | PolyBrFR | UL-94 *** | LOI, Vol.% | Es(LOI) | PHRR, kW/m2 | TSR m2/m2 | RPHRR % | Es(RPHRR) | |
PA66 | 100 | - | - | F | 22.6 | - | 1644 | 609 | - | - |
BrPS | 90 | - | 10 | V-2/V-2/F | 22.9 | - | 1049 | 1821 | 36.2 | - |
BrPBz | 90 | - | 10 | V-2 | 22.3 | - | 1206 | 1447 | 26.6 | - |
AlW ** | 95 | 5 | - | V-0/V-2/F | 23.0 | - | 1156 | 927 | 29.7 | - |
SnW ** | 95 | 5 | - | F/F/V-2 | 21.5 | - | 954 | 939 | 42.0 | - |
ZnW ** | 95 | 5 | - | F | 22.0 | - | 1190 | 638 | 27.6 | - |
AlW-BrPS | 85 | 5 | 10 | V-2/V-2/F | 23.3 | 1 | 999 | 1789 | 39.2 | 0.60 |
AlW-BrPBz | 85 | 5 | 10 | F/F/V-2 | 22.3 | 0 | 1174 | 1246 | 28.6 | 0.51 |
SnW-BrPS | 85 | 5 | 10 | V-2 | 26.7 | >1 | 546 | 1973 | 66.8 | 0.85 |
SnW-BrPBz | 85 | 5 | 10 | F/F/V-2 | 26.7 | >1 | 802 | 1766 | 51.2 | 0.75 |
ZnW-BrPS | 85 | 5 | 10 | V-2 | 26.2 | >1 | 485 | 949 | 70.5 | 1.11 |
ZnW-BrPBz | 85 | 5 | 10 | V-2/V-2/V-0 | 28.5 | >1 | 896 | 1186 | 45.5 | 0.84 |
PA66 **** | 100 | - | - | F | 24.5 | - | 1359 | 569 | - | - |
BrPS **** | 85.1 | - | 14.9 | V-2 | 23.8 | - | 1056 | 1730 | - | - |
BrPBz **** | 85.9 | - | 14.1 | V-2 | 23.9 | - | 990 | 1490 | 27.1 | - |
ZnS-BrPS **** | 77.8 | 7.3 | 14.9 | V-1 | 26.7 | >1 | 354 | 1473 | 74.0 | 1.20 |
ATO-BrPS **** | 79.0 | 6.1 | 14.9 | V-2 | 31.0 | >1 | 562 | 2794 | 58.6 | 0.88 |
ZnS-BrPBz **** | 78.6 | 7.3 | 14.1 | V-0 | 28.5 | >1 | 163 | 969 | 88.0 | 1.32 |
ATO-BrPBz **** | 79.8 | 6.1 | 14.1 | V-2 | 31.9 | >1 | 584 | 2707 | 57.0 | 0.80 |
Sample | CO2 (Air) | CO2 (N2) | NH3 (Air) | NH3 (N2) | CHx (Air) | CHx (N2) |
---|---|---|---|---|---|---|
Control | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
BrPS | 0.76 | 0.33 | 1.27 | 1.01 | 1.24 | 1.24 |
BrPBz | 0.77 | 0.63 | 0.97 | 1.58 | 1.43 | 2.54 |
ZnW | 1.06 | 0.92 | 1.16 | 1.24 | 1.11 | 1.34 |
SnW | 1.04 | 1.30 | 1.55 | 2.03 | 1.26 | 1.87 |
SnW-BrPS | 1.06 | 1.05 | 1.21 | 2.24 | 1.34 | 1.50 |
SnW-BrPBz | 1.09 | 0.73 | 2.01 | 2.37 | 1.51 | 1.59 |
ZnW-BrPS * | 1.06 | 0.92 | 1.28 | 1.75 | 1.32 | 0.55 |
ZnW-BrPBz * | 1.91 | 0.50 | 1.73 | 1.28 | 0.77 | 0.28 |
Sample | Br:W | Sn/Zn:W |
---|---|---|
SnW/BrPS plaque | 7.532 | 1.000 |
Char | 0.040 | 0.673 |
SnW-BrPBz plaque | 6.796 | 1.000 |
Char | 0.053 | 0.638 |
ZnW-BrPS plaque | 7.046 | 1.000 |
Char | 0.368 | 0.284 |
ZnW-BrPBz plaque | 3.842 | 1.000 |
Char | 0.210 | 0.179 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holdsworth, A.F.; Horrocks, A.R.; Kandola, B.K. Potential Synergism between Novel Metal Complexes and Polymeric Brominated Flame Retardants in Polyamide 6.6. Polymers 2020, 12, 1543. https://doi.org/10.3390/polym12071543
Holdsworth AF, Horrocks AR, Kandola BK. Potential Synergism between Novel Metal Complexes and Polymeric Brominated Flame Retardants in Polyamide 6.6. Polymers. 2020; 12(7):1543. https://doi.org/10.3390/polym12071543
Chicago/Turabian StyleHoldsworth, Alistair F., A. Richard Horrocks, and Baljinder K. Kandola. 2020. "Potential Synergism between Novel Metal Complexes and Polymeric Brominated Flame Retardants in Polyamide 6.6" Polymers 12, no. 7: 1543. https://doi.org/10.3390/polym12071543
APA StyleHoldsworth, A. F., Horrocks, A. R., & Kandola, B. K. (2020). Potential Synergism between Novel Metal Complexes and Polymeric Brominated Flame Retardants in Polyamide 6.6. Polymers, 12(7), 1543. https://doi.org/10.3390/polym12071543