Washable Colorimetric Nanofiber Nonwoven for Ammonia Gas Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Meta-Aramid
2.2. Synthesis of Dye 3
2.3. Fabrication of Meta-Aramid/Dye 3 Colorimetric Nanofiber Sensors
2.4. Characterization
2.5. Gas Test of the Colorimetric Nanofiber Sensor
2.6. Color Fastness Test
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fedoruk, M.J.; Bronstein, R.; Kerger, B.D. Ammonia exposure and hazard assessment for selected household cleaning product uses. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 534–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, A.T.; Cho, Y.B.; Park, J.S.; Yang, Y.; Kim, Y.S. Sensitive naked-eye detection of gaseous ammonia based on dye-impregnated nanoporous polyacrylonitrile mats. Sens. Actuators B 2016, 230, 250–259. [Google Scholar] [CrossRef]
- Chen, H.I.; Hsiao, C.Y.; Chen, W.C.; Chang, C.H.; Chou, T.C.; Liu, I.P.; Lin, K.W.; Liu, W.C. Characteristics of a Pt/NiO thin film-based ammonia gas sensor. Sens. Actuators B 2018, 256, 962–967. [Google Scholar] [CrossRef]
- Khattab, T.A.; Dacrory, S.; Abou-Yousef, H.; Kamel, S. Development of microporous cellulose-based smart xerogel reversible sensor via freeze drying for naked-eye detection of ammonia gas. Carbohydr. Polym. 2019, 210, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Hussain, G.; Aldous, L.; Silvester, D.S. Preparation of platinum-based ‘cauliflower microarrays’ for enhanced ammonia gas sensing. Anal. Chim. Acta 2019, 1048, 12–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eising, M.; Cava, C.E.; Salvatierra, R.V.; Zarbin, A.J.G.; Roman, L.S. Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sens. Actuators B 2017, 245, 25–33. [Google Scholar] [CrossRef]
- Long, G.; Guo, Y.; Li, W.; Tang, Q.; Zu, X.; Ma, J.; Du, B.; Fu, Y. Surface acoustic wave ammonia sensor based on ZnS mucosal-like nanostructures. Microelectron. Eng. 2020, 222, 1–7. [Google Scholar] [CrossRef]
- Wang, T.; Yasukochi, W.; Korposh, S.; James, S.W.; Tatam, R.P.; Lee, S.W. A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas. Sens. Actuators B 2016, 228, 573–580. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, X.; Jung, H.; Nam, S.J.; Kim, M.H.; Yoon, J. Colorimetric and fluorescent detecting phosgene by a second-generation chemosensor. Anal. Chem. 2018, 90, 3382–3386. [Google Scholar] [CrossRef]
- Geltmeyer, J.; Vancoillie, G.; Steyaert, I.; Breyne, B.; Cousins, G.; Lava, K.; Hoogenboom, R.; De Buysser, K.; De Clerck, K. Dye Modification of nanofibrous silicon oxide membranes for colorimetric HCl and NH3 sensing. Adv. Funct. Mater. 2016, 26, 5987–5996. [Google Scholar] [CrossRef] [Green Version]
- Gale, P.A.; Caltagirone, C. Fluorescent and colorimetric sensors for anionic species. Coord. Chem. Rev. 2018, 354, 2–27. [Google Scholar] [CrossRef]
- Ajay Piriya, V.S.; Joseph, P.; Daniel, S.C.G.K.; Lakshmanan, S.; Kinoshita, T.; Muthusamy, S. Colorimetric sensors for rapid detection of various analytes. Mater. Sci. Eng. C 2017, 78, 1231–1245. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.S.; Verwilst, P.; Kim, W.Y.; Kim, J.S. Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem. Soc. Rev. 2016, 45, 1242–1256. [Google Scholar] [CrossRef] [PubMed]
- Prosposito, P.; Burratti, L.; Venditti, I. Silver Nanoparticles as Colorimetric Sensors for Water Pollutants. Chemosensors 2020, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Khattab, T.A.; Dacrory, S.; Abou-Yousef, H.; Kamel, S. Smart microfibrillated cellulose as swab sponge-like aerogel for real-time colorimetric naked-eye sweat monitoring. Talanta 2019, 205, 120166. [Google Scholar] [CrossRef]
- Kim, C.; Lee, H.; Devaraj, V.; Kim, W.G.; Lee, Y.; Kim, Y.; Jeong, N.N.; Choi, E.J.; Baek, S.H.; Han, D.W.; et al. Hierarchical cluster analysis of medical chemicals detected by a bacteriophage-based colorimetric sensor array. Nanomaterials 2020, 10, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Sun, X.; Hu, P.A.; Zhang, J.; Wang, L.; Feng, W.; Lei, S.; Yang, B.; Cao, W. Colorimetric sensor based on self-assembled polydiacetylene/graphene-stacked composite film for vapor-phase volatile organic compounds. Adv. Funct. Mater. 2013, 23, 6044–6050. [Google Scholar] [CrossRef]
- Dolai, S.; Bhunia, S.K.; Beglaryan, S.S.; Kolusheva, S.; Zeiri, L.; Jelinek, R. Colorimetric polydiacetylene-aerogel detector for volatile organic compounds (VOCs). ACS Appl. Mater. Interfaces 2017, 9, 2891–2898. [Google Scholar] [CrossRef]
- Thornton, B.T.E.; Harrison, A.; Pham, A.L.; Castano, C.E.; Tang, C. Polyaniline-functionalized nanofibers for colorimetric detection of HCl vapor. ACS Omega 2018, 3, 3587–3591. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.K.; Oh, B.M.; Jo, A.R.; Han, J.H.; Lim, J.Y.; Oh, H.J.; Lim, S.J.; Kim, J.H.; Lee, W.S. Fabrication of colorimetric textile sensor based on rhodamine dye for acidic gas detection. Polymers 2020, 12, 431. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Yang, Z.; Chen, Y.; Zhang, J.; Wang, Q.; Huang, F.; Wei, Q. A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloid. Surf. Phys. Eng. Asp. 2016, 494, 248–255. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, L.; Jung, H.; Zeng, Y.; Lee, S.; Swamy, K.M.K.; Zhou, X.; Kim, M.H.; Yoon, J. Effective strategy for colorimetric and fluorescence sensing of phosgene based on small organic dyes and nanofiber platforms. ACS Appl. Mater. Interfaces 2016, 8, 22246–22252. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Li, P.; Song, P.; Wang, B.; Zhao, J.; Han, K. An ICT-based strategy to a colorimetric and ratiometric fluorescence probe for hydrogen sulfide in living cells. Chem. Commun. 2012, 48, 2852–2854. [Google Scholar] [CrossRef] [PubMed]
- Khattab, T.A.; Fouda, M.M.G.; Abdelrahman, M.S.; Othman, S.I.; Bin-Jumah, M.; Alqaraawi, M.A.; Al Fassam, H.; Allam, A.A. Co-encapsulation of enzyme and tricyanofuran hydrazone into alginate microcapsules incorporated onto cotton fabric as a biosensor for colorimetric recognition of urea. React. Funct. Polym. 2019, 142, 199–206. [Google Scholar] [CrossRef]
- Lee, H.; Inoue, Y.; Kim, M.; Ren, X.; Kim, I.S. Effective formation of well-defined polymeric microfibers and nanofibers with exceptional uniformity by simple mechanical needle spinning. Polymers 2018, 10, 980. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Cheung, K.C. Biodegradable cell-seeded nanofiber scaffolds for neural repair. Polymers 2011, 3, 1684–1733. [Google Scholar] [CrossRef]
- Schoolaert, E.; Hoogenboom, R.; De Clerck, K. Colorimetric nanofibers as optical sensors. Adv. Funct. Mater. 2017, 27, 1702646. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Kang, W.; Zhao, H.; Hu, M.; Ju, J.; Deng, N.; Cheng, B. Fabrication of a polyvinylidene fluoride tree-like nanofiber web for ultra high performance air filtration. RSC Adv. 2016, 6, 91243–91249. [Google Scholar] [CrossRef]
- Wang, X.; Si, Y.; Wang, J.; Ding, B.; Yu, J.; Al-Deyab, S.S. A facile and highly sensitive colorimetric sensor for the detection of formaldehyde based on electro-spinning/netting nano-fiber/nets. Sens. Actuators B 2012, 163, 186–193. [Google Scholar] [CrossRef]
- Yoon, J.; Chae, S.K.; Kim, J.M. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. J. Am. Chem. Soc. 2007, 129, 3038–3039. [Google Scholar] [CrossRef]
- Owyeung, R.E.; Panzer, M.J.; Sonkusale, S.R. Colorimetric gas sensing washable threads for smart textiles. Sci. Rep. 2019, 9, 5607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, B.M.; Noh, H.L.; Gwon, S.Y.; Park, Y.K.; Cho, N.; Lee, W.; Kim, S.H.; Kim, J.H. Some properties of a new D-π-A dye based on hydroxyl-methoxybenzene donor and isophorone acceptor moiety: Effects of anion, ethylamine and temperature. Dye. Pigm. 2018, 159, 158–165. [Google Scholar] [CrossRef]
- Wilfred, S. Poly-Meta-Phenylene Isophthalamides. U.S. Patent 3,287,324, 22 November 1966. [Google Scholar]
- Oh, H.J.; Pant, H.R.; Kang, Y.S.; Jeon, K.S.; Pant, B.; Kim, C.S.; Kim, H.Y. Synthesis and characterization of spider-web-like electrospun mats of meta-aramid. Polym. Int. 2012, 61, 1675–1682. [Google Scholar] [CrossRef]
- Oh, H.J.; Han, S.H.; Kim, S.S. A novel method for a high-strength electrospun meta-aramid nanofiber by microwave treatment. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 807–814. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Color difference Delta E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Wang, X.; Ding, B.; Sun, G.; Wang, M.; Yu, J. Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog. Mater. Sci. 2013, 58, 1173–1243. [Google Scholar] [CrossRef]
- Schoolaert, E.; Steyaert, I.; Vancoillie, G.; Geltmeyer, J.; Lava, K.; Hoogenboom, R.; Clerck, K.D. Blend electrospinning of dye-functionalized chitosan and poly(e-caprolactone): Towards biocompatible pH-sensors. J. Mater. Chem. B 2016, 4, 4507–4516. [Google Scholar] [CrossRef] [Green Version]
- Khattab, T.A.; Abdelmoez, S.; Klapötke, T.M. Electrospun Nanofibers from a Tricyanofuran-Based Molecular Switch for Colorimetric Recognition of Ammonia Gas. Chem. A Eur. J. 2016, 22, 4157–4163. [Google Scholar] [CrossRef]
Label | Solution Conditions | FE-SEM | TGA 1 | Thickness (mm) | Contact Angle (°) | Porosity (%) | |||
---|---|---|---|---|---|---|---|---|---|
Meta-Aramid (wt %) | Dye 3 (wt %) | Fiber Diameter (nm) | Sub-Net Diameter (nm) | 99% | 90% | ||||
M14 | 14 | 0 | 177 ± 11 | 21.4 ± 1.9 | 162 | 422 | 0.02 | 44.0° ± 5.1 | 94.9 ± 1.0 |
D1 | 14 | 1 | 238.6 ± 16 | 53.8 ± 27.2 | 169 | 401 | 0.02 | 94.4° ± 16.1 | 71.5 ± 6.1 |
D5 | 14 | 5 | 250.0 ± 25 | 54.2 ± 34.6 | 179 | 378 | 0.02 | 102.4° ± 11.6 | 84.1 ± 0.4 |
D10 | 14 | 10 | 306.5 ± 45 | 58.6 ± 53.3 | 179 | 353 | 0.02 | 112.0° ± 8.2 | 81.2 ± 2.3 |
Type of Doping | Polymer Matrix | Functionality | Response Time | Detection Limit | Washable | Ref. |
---|---|---|---|---|---|---|
Dye-doped | Meta-aramid | Dye 3 | <10 s | 1 ppm | O | This work |
Functionalized (co) polymers | PCL | Methyl red-chitosan | <3 s | - | - | [38] |
Dye-doped | PAA | Hydrazone-tricyanofuran | - | 0–750 nM | - | [39] |
Functionalized (co) polymers | TEOS | Methyl Red-APTES | <1 s | 100 ppm | - | [10] |
Dye-coating | PAN | Bromocresol Green | <1 min | 1 ppm | - | [2] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, H.J.; Yeang, B.J.; Park, Y.K.; Choi, H.J.; Kim, J.H.; Kang, Y.S.; Bae, Y.; Kim, J.Y.; Lim, S.J.; Lee, W.; et al. Washable Colorimetric Nanofiber Nonwoven for Ammonia Gas Detection. Polymers 2020, 12, 1585. https://doi.org/10.3390/polym12071585
Oh HJ, Yeang BJ, Park YK, Choi HJ, Kim JH, Kang YS, Bae Y, Kim JY, Lim SJ, Lee W, et al. Washable Colorimetric Nanofiber Nonwoven for Ammonia Gas Detection. Polymers. 2020; 12(7):1585. https://doi.org/10.3390/polym12071585
Chicago/Turabian StyleOh, Hyun Ju, Byeong Jin Yeang, Young Ki Park, Hyun Jung Choi, Jong H. Kim, Young Sik Kang, Younghwan Bae, Jung Yeon Kim, Seung Ju Lim, Woosung Lee, and et al. 2020. "Washable Colorimetric Nanofiber Nonwoven for Ammonia Gas Detection" Polymers 12, no. 7: 1585. https://doi.org/10.3390/polym12071585
APA StyleOh, H. J., Yeang, B. J., Park, Y. K., Choi, H. J., Kim, J. H., Kang, Y. S., Bae, Y., Kim, J. Y., Lim, S. J., Lee, W., & Hahm, W. -G. (2020). Washable Colorimetric Nanofiber Nonwoven for Ammonia Gas Detection. Polymers, 12(7), 1585. https://doi.org/10.3390/polym12071585