Macromolecular Engineering by Applying Concurrent Reactions with ATRP
Abstract
:1. Introduction
2. Concurrent Reactions Used Together with ATRP
2.1. Concurrent ATRP and ROP
2.2. Concurrent ATRP and ROMP
2.3. Concurrent ATRP and RAFT
2.4. Concurrent ATRP and ATRA Step-Growth Polymerization
2.5. Concurrent ATRP and CuAAC Click Chemistry
2.6. Concurrent ATRP and Side Group Modification
3. Future Research Directions
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Matyjaszewski, K. Macromolecular engineering: From rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. Prog. Polym. Sci. 2005, 30, 858–875. [Google Scholar] [CrossRef]
- Lutz, J.F.; Lehn, J.M.; Meijer, E.W.; Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 2016, 1, 16024. [Google Scholar] [CrossRef]
- Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Mays, J. Macromolecular architectures by living and controlled/living polymerizations. Prog. Polym. Sci. 2006, 31, 1068–1132. [Google Scholar] [CrossRef]
- Iha, R.K.; Wooley, K.L.; Nyström, A.M.; Burke, D.J.; Kade, M.J.; Hawker, C.J. Applications of Orthogonal “Click” Chemistries in the Synthesis of Functional Soft Materials. Chem. Rev. 2009, 109, 5620–5686. [Google Scholar] [CrossRef] [Green Version]
- De Greef, T.F.A.; Smulders, M.M.J.; Wolffs, M.; Schenning, A.P.H.J.; Sijbesma, R.P.; Meijer, E.W. Supramolecular Polymerization. Chem. Rev. 2009, 109, 5687–5754. [Google Scholar] [CrossRef]
- Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions. Chem. Rev. 2015, 115, 7196–7239. [Google Scholar] [CrossRef]
- Li, S.L.; Xiao, T.; Lin, C.; Wang, L. Advanced supramolecular polymers constructed by orthogonal self-assembly. Chem. Soc. Rev. 2012, 41, 5950. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, J.; Wang, L.; Zhang, L.; Cai, C. Self-Assembly of Copolymer Micelles: Higher-Level Assembly for Constructing Hierarchical Structure. Chem. Rev. 2020, 120, 4111–4140. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101, 2921–2990. [Google Scholar] [CrossRef]
- Kamigaito, M.; Ando, T.; Sawamoto, M. Metal-Catalyzed Living Radical Polymerization. Chem. Rev. 2001, 101, 3689–3746. [Google Scholar] [CrossRef]
- Tsarevsky, N.V.; Matyjaszewski, K. “Green” Atom Transfer Radical Polymerization: From Process Design to Preparation of Well-Defined Environmentally Friendly Polymeric Materials. Chem. Rev. 2007, 107, 2270–2299. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, M.; Terashima, T.; Sawamoto, M. Transition Metal-Catalyzed Living Radical Polymerization: Toward Perfection in Catalysis and Precision Polymer Synthesis. Chem. Rev. 2009, 109, 4963–5050. [Google Scholar] [CrossRef] [PubMed]
- Braunecker, W.A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93–146. [Google Scholar] [CrossRef]
- Coessens, V.; Pintauer, T.; Matyjaszewski, K. Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 2001, 26, 337–377. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Tsarevsky, N.V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 2009, 1, 276–288. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Tsarevsky, N.V. Macromolecular Engineering by Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 2014, 136, 6513–6533. [Google Scholar] [CrossRef]
- Yagci, Y.; Atilla Tasdelen, M. Mechanistic transformations involving living and controlled/living polymerization methods. Prog. Polym. Sci. 2006, 31, 1133–1170. [Google Scholar] [CrossRef]
- Bernaerts, K.V.; Du Prez, F.E. Dual/heterofunctional initiators for the combination of mechanistically distinct polymerization techniques. Prog. Polym. Sci. 2006, 31, 671–722. [Google Scholar] [CrossRef]
- Golas, P.L.; Matyjaszewski, K. Marrying click chemistry with polymerization: Expanding the scope of polymeric materials. Chem. Soc. Rev. 2010, 39, 1338–1354. [Google Scholar] [CrossRef]
- Pearson, S.; Thomas, C.S.; Guerrero-Santos, R.; D’Agosto, F. Opportunities for dual RDRP agents in synthesizing novel polymeric materials. Polym. Chem. 2017, 8, 4916–4946. [Google Scholar] [CrossRef]
- Di Lena, F.; Matyjaszewski, K. Transition metal catalysts for controlled radical polymerization. Prog. Polym. Sci. 2010, 35, 959–1021. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, M.; Zhang, Y.; Magenau, A.J.D.; Matyjaszewski, K. Halogen Conservation in Atom Transfer Radical Polymerization. Macromolecules 2012, 45, 8929–8932. [Google Scholar] [CrossRef]
- Jakubowski, W.; Matyjaszewski, K. Activators Regenerated by Electron Transfer for Atom-Transfer Radical Polymerization of (Meth)acrylates and Related Block Copolymers. Angew. Chem. Int. Ed. 2006, 45, 4482–4486. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Parker, B.; Matyjaszewski, K. ATRP of MMA with ppm Levels of Iron Catalyst. Macromolecules 2011, 44, 4022–4025. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J.; Braunecker, W.A.; Tsarevsky, N.V. Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proc. Natl. Acad. Sci. USA 2006, 103, 15309–15314. [Google Scholar] [CrossRef] [Green Version]
- Mukumoto, K.; Wang, Y.; Matyjaszewski, K. Iron-Based ICAR ATRP of Styrene with ppm Amounts of FeIIIBr3 and 1, 1′-Azobis(cyclohexanecarbonitrile). ACS Macro Lett. 2012, 1, 599–602. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Matyjaszewski, K. ATRP of Methyl Acrylate with Metallic Zinc, Magnesium, and Iron as Reducing Agents and Supplemental Activators. Macromolecules 2011, 44, 683–685. [Google Scholar] [CrossRef]
- Konkolewicz, D.; Wang, Y.; Zhong, M.; Krys, P.; Isse, A.A.; Gennaro, A.; Matyjaszewski, K. Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. A Critical Assessment of the SARA ATRP and SET-LRP Mechanisms. Macromolecules 2013, 46, 8749–8772. [Google Scholar] [CrossRef]
- Konkolewicz, D.; Wang, Y.; Krys, P.; Zhong, M.; Isse, A.A.; Gennaro, A.; Matyjaszewski, K. SARA ATRP or SET-LRP. End of controversy? Polym. Chem. 2014, 5, 4409. [Google Scholar] [CrossRef]
- Magenau, A.J.D.; Strandwitz, N.C.; Gennaro, A.; Matyjaszewski, K. Electrochemically Mediated Atom Transfer Radical Polymerization. Science 2011, 332, 81–84. [Google Scholar] [CrossRef]
- Chmielarz, P.; Fantin, M.; Park, S.; Isse, A.A.; Gennaro, A.; Magenau, A.J.; Sobkowiak, A.; Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization (eATRP). Prog. Polym. Sci. 2017, 69, 47–78. [Google Scholar] [CrossRef]
- Chen, M.; Zhong, M.; Johnson, J.A. Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications. Chem. Rev. 2016, 116, 10167–10211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohapatra, H.; Kleiman, M.; Esser-Kahn, A.P. Mechanically controlled radical polymerization initiated by ultrasound. Nat. Chem. 2016, 9, 135–139. [Google Scholar] [CrossRef]
- Pan, X.; Fantin, M.; Yuan, F.; Matyjaszewski, K. Externally controlled atom transfer radical polymerization. Chem. Soc. Rev. 2018, 47, 5457–5490. [Google Scholar] [CrossRef]
- Penczek, S.; Cypryk, M.; Duda, A.; Kubisa, P.; Słomkowski, S. Living ring-opening polymerizations of heterocyclic monomers. Prog. Polym. Sci. 2007, 32, 247–282. [Google Scholar] [CrossRef]
- Bielawski, C.W.; Grubbs, R.H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 2007, 32, 1–29. [Google Scholar] [CrossRef]
- Moad, G.; Rizzardo, E.; Thang, S.H. Living Radical Polymerization by the RAFT Process. Aust. J. Chem. 2005, 58, 379. [Google Scholar] [CrossRef]
- Moad, G.; Rizzardo, E.; Thang, S.H. Living Radical Polymerization by the RAFT Process—A First Update. Aust. J. Chem. 2006, 59, 669. [Google Scholar] [CrossRef]
- Moad, G.; Rizzardo, E.; Thang, S.H. Living Radical Polymerization by the RAFT Process—A Second Update. Aust. J. Chem. 2009, 62, 1402. [Google Scholar] [CrossRef]
- Moad, G.; Rizzardo, E.; Thang, S.H. Living Radical Polymerization by the RAFT Process—A Third Update. Aust. J. Chem. 2012, 65, 985. [Google Scholar] [CrossRef]
- Pintauer, T.; Matyjaszewski, K. Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. Chem. Soc. Rev. 2008, 37, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Meldal, M.; Tomøe, C.W. Cu-catalyzed azide—Alkyne cycloaddition. Chem. Rev. 2008, 108, 2952–3015. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, M.; Terashima, T.; Sawamoto, M. Precision Control of Radical Polymerization via Transition Metal Catalysis: From Dormant Species to Designed Catalysts for Precision Functional Polymers. Acc. Chem. Res. 2008, 41, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Mecerreyes, D.; Moineau, G.; Dubois, P.; Jérôme, R.; Hedrick, J.L.; Hawker, C.J.; Malmström, E.E.; Trollsas, M. Simultaneous Dual Living Polymerizations: A Novel One-Step Approach to Block and Graft Copolymers. Angew. Chemie Int. Ed. 1998, 37, 1274–1276. [Google Scholar] [CrossRef]
- Hawker, C.J.; Hedrick, J.L.; Malmström, E.E.; Trollsås, M.; Mecerreyes, D.; Moineau, G.; Dubois, P.; Jérôme, R. Dual Living Free Radical and Ring Opening Polymerizations from a Double-Headed Initiator. Macromolecules 1998, 31, 213–219. [Google Scholar] [CrossRef]
- Degirmenci, M.; Gokkaya, C.; Durgun, M. One-step synthesis of a mid-chain functional macrophotoinitiator of a polystyrene-poly(ε-caprolactone) diblock copolymer via simultaneous ATRP and ROP using a dual-functional photoinitiator. Polym. J. 2015, 48, 139–145. [Google Scholar] [CrossRef]
- Aydogan, C.; Kutahya, C.; Allushi, A.; Yilmaz, G.; Yagci, Y. Block copolymer synthesis in one shot: Concurrent metal-free ATRP and ROP processes under sunlight. Polym. Chem. 2017, 8, 2899–2903. [Google Scholar] [CrossRef]
- Mecerreyes, D.; Trollsås, M.; Hedrick, J.L. ABC BCD Polymerization: A Self-Condensing Vinyl and Cyclic Ester Polymerization by Combination Free-Radical and Ring-Opening Techniques. Macromolecules 1999, 32, 8753–8759. [Google Scholar] [CrossRef]
- Bielawski, C.W.; Louie, J.; Grubbs, R.H. Tandem Catalysis: Three Mechanistically Distinct Reactions from a Single Ruthenium Complex. J. Am. Chem. Soc. 2000, 122, 12872–12873. [Google Scholar] [CrossRef] [Green Version]
- Airaud, C.; Ibarboure, E.; Gaillard, C.; Héroguez, V. Nanostructured polymer composite nanoparticles synthesized in a single step via simultaneous ROMP and ATRP under microemulsion conditions. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 4014–4027. [Google Scholar] [CrossRef]
- Quémener, D.; Bousquet, A.; Héroguez, V.; Gnanou, Y. Hybrid Polymer Particles by Tandem Ring-Opening Metathesis and Atom Transfer Radical Polymerizations in Aqueous Miniemulsion. Macromolecules 2006, 39, 5589–5591. [Google Scholar] [CrossRef]
- Kwak, Y.; Matyjaszewski, K. Effect of Initiator and Ligand Structures on ATRP of Styrene and Methyl Methacrylate Initiated by Alkyl Dithiocarbamate. Macromolecules 2008, 41, 6627–6635. [Google Scholar] [CrossRef]
- Kwak, Y.; NicolaŸ, R.; Matyjaszewski, K. Synergistic Interaction Between ATRP and RAFT: Taking the Best of Each World. Aust. J. Chem. 2009, 62, 1384. [Google Scholar] [CrossRef]
- Kwak, Y.; NicolaŸ, R.; Matyjaszewski, K. Concurrent ATRP/RAFT of Styrene and Methyl Methacrylate with Dithioesters Catalyzed by Copper(I) Complexes. Macromolecules 2008, 41, 6602–6604. [Google Scholar] [CrossRef]
- NicolaŸ, R.; Kwak, Y.; Matyjaszewski, K. A Green Route to Well-Defined High-Molecular-Weight (Co)polymers Using ARGET ATRP with Alkyl Pseudohalides and Copper Catalysis. Angew. Chemie Int. Ed. 2010, 49, 541–544. [Google Scholar] [CrossRef]
- Wang, Y.; Fantin, M.; Matyjaszewski, K. Synergy between Electrochemical ATRP and RAFT for Polymerization at Low Copper Loading. Macromol. Rapid Commun. 2018, 39, 1800221. [Google Scholar] [CrossRef]
- Pan, J.; Miao, J.; Zhang, L.; Si, Z.; Zhang, C.; Cheng, Z.; Zhu, X. Iron-mediated (dual) concurrent ATRP–RAFT polymerization of water-soluble poly(ethylene glycol) monomethyl ether methacrylate. Polym. Chem. 2013, 4, 5664. [Google Scholar] [CrossRef]
- Kwak, Y.; NicolaŸ, R.; Matyjaszewski, K. A Simple and Efficient Synthesis of RAFT Chain Transfer Agents via Atom Transfer Radical Addition—Fragmentation. Macromolecules 2009, 42, 3738–3742. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhang, Q.Y.; Di, W.L.; Zhang, Y.G.; Ding, C. A novel copper catalyst containing a hydroxyl functional group: A facile strategy to prepare block copolymers of vinyl monomer and ϵ-caprolactone via tandem reverse ATRP and ROP. Polym. Chem. 2017, 8, 4752–4760. [Google Scholar] [CrossRef]
- Mizutani, M.; Satoh, K.; Kamigaito, M. Metal-Catalyzed Radical Polyaddition for Aliphatic Polyesters via Evolution of Atom Transfer Radical Addition into Step-Growth Polymerization. Macromolecules 2009, 42, 472–480. [Google Scholar] [CrossRef]
- Mizutani, M.; Satoh, K.; Kamigaito, M. Metal-catalyzed simultaneous chain- and step-growth radical polymerization: Marriage of vinyl polymers and polyesters. J. Am. Chem. Soc. 2010, 132, 7498–7507. [Google Scholar] [CrossRef] [PubMed]
- Mizuntani, M.; Satoh, K.; Kamigaito, M. Degradable poly(N-isopropylacrylamide) with tunable thermosensitivity by simultaneous chain-and step-growth radical polymerization. Macromolecules 2011, 44, 2382–2386. [Google Scholar] [CrossRef]
- Mizutani, M.; Palermo, E.F.; Thoma, L.M.; Satoh, K.; Kamigaito, M.; Kuroda, K. Design and synthesis of self-degradable antibacterial polymers by simultaneous chain- and step-growth radical copolymerization. Biomacromolecules 2012, 13, 1554–1563. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Bai, X.; Zhang, X.; Chen, M.; Huang, Q.; Hu, Z.; Tu, Y. Facile synthesis of block copolymers from a cinnamate derivative by combination of AGET ATRP and click chemistry. Macromol. Res. 2014, 22, 1306–1311. [Google Scholar] [CrossRef]
- Xue, W.; Wang, J.; Wen, M.; Chen, G.; Zhang, W. Integration of CuAAC Polymerization and Controlled Radical Polymerization into Electron Transfer Mediated “Click-Radical” Concurrent Polymerization. Macromol. Rapid Commun. 2017, 38, 1600733. [Google Scholar] [CrossRef]
- Han, D.; Tong, X.; Zhao, Y. One-Pot Synthesis of Brush Diblock Copolymers through Simultaneous ATRP and Click Coupling. Macromolecules 2011, 44, 5531–5536. [Google Scholar] [CrossRef]
- Xu, B.; Feng, C.; Huang, X. A versatile platform for precise synthesis of asymmetric molecular brush in one shot. Nat. Commun. 2017, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xue, W.; Ming, W.; Weng, Y.; Chen, G.; Haddleton, D.M. Regenerable-Catalyst-Aided, Opened to Air and Sunlight-Driven “CuAAC&ATRP” Concurrent Reaction for Sequence-Controlled Copolymer. Macromol. Rapid Commun. 2017, 38, 1700511. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, G.; Zhang, Z.; Zhou, N.; Zhang, W.; Zhu, X. Fe(0) powder-catalyzed one-pot reaction: Concurrent living radical polymerization and click chemistry for topological polymers. Polym. Chem. 2015, 6, 4794–4800. [Google Scholar] [CrossRef]
- Yao, F.; Xu, L.; Fu, G.D.; Lin, B. Sliding-Graft Interpenetrating Polymer Networks from Simultaneous “Click Chemistry” and Atom Transfer Radical Polymerization. Macromolecules 2010, 43, 9761–9770. [Google Scholar] [CrossRef]
- Qin, A.; Lam, J.W.Y.; Tang, B.Z. Click polymerization. Chem. Soc. Rev. 2010, 39, 2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenyves, R.; Schmutz, M.; Horner, I.J.; Bright, F.V.; Rzayev, J. Aqueous Self-Assembly of Giant Bottlebrush Block Copolymer Surfactants as Shape-Tunable Building Blocks. J. Am. Chem. Soc. 2014, 136, 7762–7770. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Tao, L.; Zhang, Y.; Li, S.; Wei, Y. Combining chemoenzymatic monomer transformation with ATRP: A facile “one-pot” approach to functional polymers. Chem. Commun. 2012, 48, 9062. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Zhu, C.; Wang, S.; Liu, H.; Zhang, Y.; Guo, H.; Tao, L.; Wei, Y. One-pot synthesis of optically active polymervia concurrent cooperation of enzymatic resolution and living radical polymerization. Polym. Chem. 2013, 4, 264–267. [Google Scholar] [CrossRef]
- Nakatani, K.; Terashima, T.; Sawamoto, M. Concurrent tandem living radical polymerization: Gradient copolymers via in situ monomer transformation with alcohols. J. Am. Chem. Soc. 2009, 131, 13600–13601. [Google Scholar] [CrossRef]
- Nakatani, K.; Ogura, Y.; Koda, Y.; Terashima, T.; Sawamoto, M. Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification. J. Am. Chem. Soc. 2012, 134, 4373–4383. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Nguyen, M.; Gildersleeve, A.J. Macromolecular Engineering by Applying Concurrent Reactions with ATRP. Polymers 2020, 12, 1706. https://doi.org/10.3390/polym12081706
Wang Y, Nguyen M, Gildersleeve AJ. Macromolecular Engineering by Applying Concurrent Reactions with ATRP. Polymers. 2020; 12(8):1706. https://doi.org/10.3390/polym12081706
Chicago/Turabian StyleWang, Yu, Mary Nguyen, and Amanda J. Gildersleeve. 2020. "Macromolecular Engineering by Applying Concurrent Reactions with ATRP" Polymers 12, no. 8: 1706. https://doi.org/10.3390/polym12081706
APA StyleWang, Y., Nguyen, M., & Gildersleeve, A. J. (2020). Macromolecular Engineering by Applying Concurrent Reactions with ATRP. Polymers, 12(8), 1706. https://doi.org/10.3390/polym12081706