Synthesis and Nonisothermal Crystallization Kinetics of Poly(Butylene Terephthalate-co-Tetramethylene Ether Glycol) Copolyesters
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of PBT-co-PTMEG Copolymers
2.3. Measurement
2.3.1. Nuclear Magnetic Resonance Spectroscopy (1H-NMR)
2.3.2. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.3.3. Intrinsic Viscosity (I.V.)
2.3.4. Differential Scanning Calorimetry (DSC)
2.3.5. Thermogravimetric Analysis (TGA)
2.3.6. X-ray Diffraction (XRD)
2.3.7. Nonisothermal Crystallization Analysis
2.3.8. Polarizing Light Microscope (PLM)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Djonlagic, J.; Nikolic, M.S. Thermoplastic copolyester elastomers. In Handbook of Engineering and Speciality Thermoplastics; Thomas, S., Visakh, P.M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 377–427. ISBN 978-1-118-10472-9. [Google Scholar]
- Amin, S.; Amin, M. Thermoplastic elastomeric (TPE) materials and their use in outdoor electrical insulation. Adv. Mater. Sci. 2011, 29, 15–30. [Google Scholar]
- Lu, X.; Isacsson, U. Modification of road bitumens with thermoplastic polymers. Polym. Test. 2001, 20, 77–86. [Google Scholar] [CrossRef]
- Richard J, S.; Patel, N.P. Thermoplastic elastomers: Fundamentals and applications. Colloid Interface Sci. 2000, 5, 334–341. [Google Scholar]
- Holden, G. Thermoplastic elastomers. In Rubber Technology; Springer: Boston, MA, USA, 1987; pp. 465–481. [Google Scholar]
- Drobny, J.G. Handbook of Thermoplastic Elastomers; William, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; ISBN ISBN 978-0-8155-1776-4. [Google Scholar]
- Coleman, D. Block copolymers: Copolymerization of ethylene terephthalate and polyoxyethylene glycols. J. Polym. Sci. 1954, 14, 15–28. [Google Scholar] [CrossRef]
- Schmalz, H.; Abetz, V.; Lange, R.; Soliman, M. New thermoplastic elastomers by incorporation of nonpolar soft segments in PBT-based copolyesters. Macromolecules 2001, 34, 795–800. [Google Scholar] [CrossRef]
- Alvarez, C.; Capitan, M.J.; Lotti, N.; Munari, A.; Ezquerra, T.A. Structure-dynamics relationships in random poly (butylene isophthalate-co-butylene adipate) copolyesters as revealed by dielectric loss spectroscopy and X-ray scattering. Macromolecules 2003, 36, 3245–3253. [Google Scholar] [CrossRef]
- Apostolov, A.A.; Fakirov, S.; Mark, J.E. Mechanical properties in torsion for poly (butylene terephthalate) and a poly (ether ester) based on poly (ethylene glycol) and poly (butylene terephthalate). J. Appl. Polym. Sci. 1998, 69, 495–502. [Google Scholar] [CrossRef]
- Chegolya, A.S.; Shevchenko, V.V.; Mikhailov, G.D. The formation of polyethylene terephthalate in the presence of dicarboxylic acids. J. Polym. Sci. Polym. Chem. Ed. 1979, 17, 889–904. [Google Scholar] [CrossRef]
- Lotti, N.; Finelli, L.; Fiorini, M.; Righetti, M.C.; Munari, A. Synthesis and characterization of poly (butylene terephthalate-co-triethylene terephthalate) copolyesters. J. Appl. Polym. Sci. 2001, 81, 981–990. [Google Scholar] [CrossRef]
- Sandhya, T.E.; Ramesh, C.; Sivaram, S. Copolyesters based on poly (butylene terephthalate)s containing cyclohexyl and cyclopentyl ring: Effect of molecular structure on thermal and crystallization behavior. Macromolecules 2007, 40, 6906–6915. [Google Scholar] [CrossRef]
- Szymczyk, A. Structure and properties of new polyester elastomers composed of poly (trimethylene terephthalate) and poly (ethylene oxide). Eur. Polym. J. 2009, 45, 2653–2664. [Google Scholar] [CrossRef]
- Szymczyk, A.; Senderek, E.; Nastalczyk, J.; Roslaniec, Z. New multiblock poly (ether-ester)s based on poly (trimethylene terephthalate) as rigid segments. Eur. Polym. J. 2008, 44, 436–443. [Google Scholar] [CrossRef]
- Deschamps, A.A.; Grijpma, D.W.; Feijen, J. Poly (ethylene oxide)/poly (butylene terephthalate) segmented block copolymers: The effect of copolymer composition on physical properties and degradation behavior. Polymer 2001, 42, 9335–9345. [Google Scholar] [CrossRef]
- Gabriëlse, W.; Soliman, M.; Dijkstra, K. Microstructure and phase behavior of block copoly(ether ester) Thermoplastic elastomers. Macromolecules 2001, 34, 1685–1693. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Guo, Z.; Cheng, J.; Fang, Z. Biodegradable aliphatic/aromatic copoly (ester-ether)s: The effect of poly (ethylene glycol) on physical properties and degradation behavior. J. Polym. Res. 2011, 18, 187–196. [Google Scholar] [CrossRef]
- Fredrickson, G.H.; Binder, K. Kinetics of metastable states in block copolymer melts. J. Chem. Phys. 1989, 91, 7265–7275. [Google Scholar] [CrossRef]
- Li, G.; Yang, S.L.; Jiang, J.M.; Wu, C.X. Crystallization characteristics of weakly branched poly (ethylene terephthalate). Polymer 2005, 46, 11142–11148. [Google Scholar] [CrossRef]
- Malda, J.; Woodfield, T.B.F.; van der Vloodt, F.; Wilson, C.; Martens, D.E.; Tramper, J.; van Blitterswijk, C.A.; Riesle, J. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 2005, 26, 63–72. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; Ma, D. Degree of microphase separation in segmented copolymers based on poly (ethylene oxide) and poly (ethylene terephthalate). Eur. Polym. J. 1999, 35, 1335–1343. [Google Scholar] [CrossRef]
- Shonaike, G.O.; Matsuo, T. An Experimental study of impregnation conditions on glass fiber reinforced thermoplastic polyester elastomer composites. J. Reinf. Plast. Compos. 1996, 15, 16–29. [Google Scholar] [CrossRef]
- Nagai, Y.; Ogawa, T.; Yu Zhen, L.; Nishimoto, Y.; Ohishi, F. Analysis of weathering of thermoplastic polyester elastomers—I. Polyether-polyester elastomers. Polym. Degrad. Stab. 1997, 56, 115–121. [Google Scholar] [CrossRef]
- di Lorenzo, M.L.; Righetti, M.C. Crystallization of poly (butylene terephthalate). Polym. Eng. Sci. 2003, 43, 1889–1894. [Google Scholar] [CrossRef]
- Mago, G.; Fisher, F.T.; Kalyon, D.M. Effects of multiwalled carbon nanotubes on the shear-induced crystallization behavior of poly (butylene terephthalate). Macromolecules 2008, 41, 8103–8113. [Google Scholar] [CrossRef]
- Yoshioka, T.; Fujimura, T.; Manabe, N.; Yokota, Y.; Tsuji, M. Morphological study on three kinds of two-dimensional spherulites of poly (butylene terephthalate) (PBT). Polymer 2007, 48, 5780–5787. [Google Scholar] [CrossRef]
- Supaphol, P.; Dangseeyun, N.; Srimoaon, P.; Nithitanakul, M. Nonisothermal melt-crystallization kinetics for three linear aromatic polyesters. Thermochim. Acta 2003, 406, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, X.; Zhang, L. Two courses in the nonisothermal primary crystallization of poly (butylene terephthalate). J. Appl. Polym. Sci. 2013, 128, 400–406. [Google Scholar] [CrossRef]
- Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T.; Yoda, K. Structures of two crystalline forms of poly (butylene terephthalate) and reversible transition between them by mechanical deformation. Macromolecules 1976, 9, 266–273. [Google Scholar] [CrossRef]
- Deschamps, A.A.; van Apeldoorn, A.A.; Hayen, H.; de Bruijn, J.D.; Karst, U.; Grijpma, D.W.; Feijen, J. In vivo and in vitro degradation of poly (ether ester) block copolymers based on poly (ethylene glycol) and poly (butylene terephthalate). Biomaterials 2004, 25, 247–258. [Google Scholar] [CrossRef]
- Burrell, M.C.; Bhatia, Q.S.; Chera, J.J.; Michael, R.S. Surface studies of polyether–polyester copolymers and blends. J. Vac. Sci. Technol. Vac. Surf. Films 1990, 8, 2300–2305. [Google Scholar] [CrossRef]
- Nishimura, A.A.; Komagata, H. Elastomers based on polyester. J. Macromol. Sci. Part-Chem. 1967, 1, 617–625. [Google Scholar] [CrossRef]
- Witsiepe, W.K. Segmented Thermoplastic Copolyester Elastomers. U.S. Patent 3,651,014, 22 June 1972. [Google Scholar]
- Harris, J.R.; Smith, C.E. Isomerization and Hydrocracking of Paraffins. U.S. Patent 3,755,146, 28 August 1973. [Google Scholar]
- Bandara, U.; Droscher, M. The two-phase structure of segmented block copoly(ether ester). Colloid Polym. Sci. 1983, 261, 26–39. [Google Scholar] [CrossRef]
- Zhu, L.-L.; Wegner, G. The Morphology of semicrystalline segmented poly (ether ester) thermoplastic elastomers. Makromol. Chem. 1981, 182, 3625–3638. [Google Scholar] [CrossRef]
- Veenstra, H.; Hoogvliet, R.M.; Norder, B.; De Boer, A.P. Microphase separation and rheology of a semicrystalline poly (ether-ester) multiblock copolymer. J. Polym. Sci. Part B Polym. Phys. 1998, 36, 1795–1804. [Google Scholar] [CrossRef]
- Stribeck, N.; Fakirov, S.; Apostolov, A.A.; Denchev, Z.; Gehrke, R. Deformation behavior of PET, PBT and PBT-based thermoplastic elastomers as revealed by SAXS from synchrotron. Macromol. Chem. Phys. 2003, 204, 1000–1013. [Google Scholar] [CrossRef]
- Min, B.; Kim, S.-H.; Namgoong, H.; Kwon, S.-H. An NMR study on sequence distributions of block copolymers of poly (butylene terephthalate) and poly (tetramethylene glycol). Polym. Bull. 1999, 42, 587–594. [Google Scholar] [CrossRef]
- Min, B.; Bang, E. An NMR Study of the effect of polymerization methods on segmented sequence distributions of poly (butylene terephthalate)/poly (tetramethylene glycol) block copolymers. Polym. J. 1999, 31, 42–50. [Google Scholar] [CrossRef]
- Higashiyama, A.; Yamamoto, Y.; Chujo, R.; Wu, M. NMR Characterization of segment sequence in polyester-polyether copolymers. Polym. J. 1992, 24, 1345–1349. [Google Scholar] [CrossRef]
- Litvinov, V.M.; Bertmer, M.; Gasper, L.; Demco, D.E.; Blümich, B. Phase composition of block copoly (ether ester) thermoplastic elastomers studied by solid-state NMR techniques. Macromolecules 2003, 36, 7598–7606. [Google Scholar] [CrossRef]
- Burrell, M.C.; Bhatia, Q.S.; Michael, R.S. XPS and static SIMS studies of copoly (ether-esters) containing mixed polyether soft blocks. Surf. Interface Anal. 1994, 21, 553–559. [Google Scholar] [CrossRef]
- Zaim, A.; Ouled-chikh, E.; Bouchouicha, B. Thermo-mechanical characterization of a thermoplastic copolyetherester (TPC): Experimental investigation. Fibers Polym. 2018, 19, 734–741. [Google Scholar] [CrossRef]
- Konyukhova, E.V.; Neverov, V.M.; Godovsky, Y.K.; Chvalun, S.N.; Soliman, M. Deformation of polyether-polyester thermoelastoplastics: Mechanothermal and structural characterisation. Macromol. Mater. Eng. 2002, 287, 250–265. [Google Scholar] [CrossRef]
- Pesetskii, S.S.; Jurkowski, B.; Olkhov, Y.A.; Olkhova, O.M.; Storozhuk, I.P.; Mozheiko, U.M. Molecular and topological structures in polyester block copolymers. Eur. Polym. J. 2001, 37, 2187–2199. [Google Scholar] [CrossRef]
- Zhou, R.-J.; Burkhart, T. Thermal and mechanical properties of poly (ether ester)-based thermoplastic elastomer composites filled with TiO2 nanoparticles. J. Mater. Sci. 2011, 46, 2281–2287. [Google Scholar] [CrossRef]
- Kyo-Chang, C.; Eun-Kyoung, L.; Sei-Young, C. Poly (tetramethylene ether glycol)/Poly (butylene terephthalate) segmented block copolymers: Effects of composition and thermal treatment on thermal and physical properties. J. Ind. Eng. Chem. 2003, 9, 518–525. [Google Scholar]
- de Almeida, A.; Nébouy, M.; Baeza, G.P. Bimodal crystallization kinetics of PBT/PTHF segmented block copolymers: Impact of the chain rigidity. Macromolecules 2019, 52, 1227–1240. [Google Scholar] [CrossRef]
- Nébouy, M.; de Almeida, A.; Brottet, S.; Baeza, G.P. Process-oriented structure tuning of PBT/PTHF thermoplastic elastomers. Macromolecules 2018, 51, 6291–6302. [Google Scholar] [CrossRef]
- Cella, R.J. Morphology of segmented polyester thermoplastic elastomers. J. Polym. Sci. Polym. Symp. 1973, 42, 727–740. [Google Scholar] [CrossRef]
- Briber, R.M.; Thomas, E.L. Crystallization behaviour of random block copolymers of poly (butylene terephthalate) and poly (tetramethylene ether glycol). Polymer 1985, 26, 8–16. [Google Scholar] [CrossRef]
- Lilaonitkul, A.; Cooper, S.L. Properties of polyether-polyester thermoplastic elastomers. Rubber Chem. Technol. 1977, 50, 1–23. [Google Scholar] [CrossRef]
- Zhu, L.-L.; Wegner, G.; Bandara, U. The Crystallization behavior and the mechanical properties of segmented poly (ether ester) thermoplastic elastomers. Makromol. Chem. 1981, 182, 3639–3651. [Google Scholar] [CrossRef]
- Zhu, P.; Zhou, C.; Dong, X.; Sauer, B.B.; Lai, Y.; Wang, D. The segmental responses to orientation and relaxation of thermoplastic poly (ether-ester) elastomer during cyclic deformation: An in-situ WAXD/SAXS study. Polymer 2020, 188, 122120. [Google Scholar] [CrossRef]
- Nogales, A.; Sics, I.; Ezquerra, T.A.; Denchev, Z.; Balta Calleja, F.J.; Hsiao, B.S. In-situ simultaneous small- and wide-angle X-ray scattering study of poly(ether ester) during cold drawing. Macromolecules 2003, 36, 4827–4832. [Google Scholar] [CrossRef]
- Tashiro, K.; Yamamoto, H.; Yoshioka, T.; Ninh, T.H.; Tasaki, M.; Shimada, S.; Nakatani, T.; Iwamoto, H.; Ohta, N.; Masunaga, H. Hierarchical structural change in the stress-induced phase transition of poly(tetramethylene terephthalate) as studied by the simultaneous measurement of FTIR spectra and 2D synchrotron undulator WAXD/SAXS data. Macromolecules 2014, 47, 2052–2061. [Google Scholar] [CrossRef]
- Dröscher, M.; Regel, W. Highly oriented block copoly (ether ester) by solid state extrusion. Polym. Bull. 1979, 1, 551–556. [Google Scholar] [CrossRef]
- Seymour, R.W.; Overton, J.R.; Corley, L.S. Morphological characterization of polyester-based elastoplastics. Macromolecules 1975, 8, 331–335. [Google Scholar] [CrossRef]
- Pillai, P.S.; Livingston, D.I.; Strang, J.D. Structure of a styrene-butadiene-styrene block copolymer by light scattering. Angew. Makromol. Chem. 1972, 27, 219–222. [Google Scholar] [CrossRef]
- Pillai, P.S.; Livingston, D.I.; Strang, J.D. Solvent effects in styrene—butadiene—styrene block copolymer cast films and evidence for supermolecular ordering by X-Ray and light scattering. Rubber Chem. Technol. 1972, 45, 241–251. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, F.; Wang, J.; Na, H.; Zhu, J. Synthesis of poly (butylene terephthalate)-poly(tetramethylene glycol) copolymers using terephthalic acid as starting material: A comparation between two synthetic strategies. Chin. J. Polym. Sci. 2015, 33, 1283–1293. [Google Scholar] [CrossRef]
- Kim, J.B.; Chun, J.H.; Kim, D.H.; Choi, Y.H.; Lee, M.S. Poly (ether-ester) multiblock copolymers based on poly (oxymethylene-alt-oxyalkylene) glycols. Macromol. Res. 2002, 10, 230–235. [Google Scholar] [CrossRef]
- Yan, T.; Yao, Y.; Jin, H.; Yu, J.; Zhang, Y.; Wang, H. Elastic response of copolyether-ester fiber on its phase morphology under different heat-treatment condition. J. Polym. Res. 2016, 23, 226. [Google Scholar] [CrossRef]
- Yu, J.; Yan, T.; Ji, H.; Chen, K.; Liu, S.; Nan, J.; Zhang, Y.; Wang, H. The evolution of structure and performance in copolyether-ester fibers with different heat-treatment process. J. Polym. Res. 2019, 26, 50. [Google Scholar] [CrossRef]
- Richeson, G.C.; Spruiell, J.E. Preparation, structure, and properties of copolyester-ether elastic filaments. J. Appl. Polym. Sci. 1990, 41, 845–875. [Google Scholar] [CrossRef]
- Abdo, D.; Gleadall, A.; Sprengel, D.; Silberschmidt, V.V. Experimental and Morphological Investigations of fracture behavior of PBT/TPEE. Proc. Struct. Integr. 2018, 13, 511–516. [Google Scholar] [CrossRef]
- Li, H.; White, J.L. Structure development in melt spinning filaments from polybutylene terephthalate based thermoplastic elastomers. Polym. Eng. Sci. 2000, 40, 917–928. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212–224. [Google Scholar] [CrossRef]
- Liu, T.; Mo, Z.; Wang, S.; Zhang, H. Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym. Eng. Sci. 1997, 37, 568–575. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Kim, J.-Y. Poly (butylene terephthalate) nanocomposites containing carbon nanotube. In Advances in Nanocomposites-Synthesis, Characterization and Industrial Applications; Reddy, B., Ed.; InTech Publishing: London, UK, 2011; pp. 707–726. ISBN 978-953-307-165-7. [Google Scholar]
- Qiu, D.; Zhang, P.; Zhang, S.; Sun, J.; Wang, J.; Dai, L. Synthesis and non-isothermal crystallization kinetics of poly (ethylene terephthalate)- co-poly (propylene glycol) copolymers. Polym. Adv. Technol. 2015, 26, 1130–1140. [Google Scholar] [CrossRef]
- Chen, C.-W.; Hsu, T.-S.; Huang, K.-W.; Rwei, S.-P. Effect of 1,2,4,5-benzenetetracarboxylic acid on unsaturated poly (butylene adipate-co-butylene itaconate) copolyesters: Synthesis, non-isothermal crystallization kinetics, thermal and mechanical properties. Polymers 2020, 12, 1160. [Google Scholar] [CrossRef]
- Jin, C.; Leng, X.; Zhang, M.; Wang, Y.; Wei, Z.; Li, Y. Fully biobased biodegradable poly (L-lactide)- b-poly (ethylene brassylate)-b-poly (L-lactide) triblock copolymers: Synthesis and investigation of relationship between crystallization morphology and thermal properties. Polym. Int. 2020, 69, 363–372. [Google Scholar] [CrossRef]
- Sperling, L.H. Introduction to Physical Polymer Science; Wiley & Sons Inc.: Hoboken, NJ, USA, 2005; p. 878. [Google Scholar]
Sample | I.V. | Mn | wPTMEG−Feed | wPTMEG−NMR |
---|---|---|---|---|
(dL g−1) | (g mole−1) | (wt%) | (wt%) | |
PBT | 0.99 | 34,384 | 0 | 0 |
PBT-co-PTMEG-10 | 0.90 | 30,654 | 10 | 9.1 |
PBT-co-PTMEG-20 | 0.85 | 28,614 | 20 | 17.5 |
PBT-co-PTMEG-30 | 1.16 | 41,618 | 30 | 28.5 |
PBT-co-PTMEG-40 | 1.33 | 49,073 | 40 | 41.8 |
Sample | Tc | ΔHc | Tm | ΔHm | Td-5% |
---|---|---|---|---|---|
(°C) | (J g−1) | (°C) | (J g−1) | (°C) | |
PBT | 182.3 | 47.0 | 226.3 | 51.4 | 371.5 |
PBT-co-PTMEG-10 | 175.5 | 45.9 | 224.7 | 49.8 | 369.6 |
PBT-co-PTMEG-20 | 168.8 | 37.5 | 218.6 | 39.2 | 369.7 |
PBT-co-PTMEG-30 | 157.8 | 28.6 | 209.4 | 31.6 | 370.5 |
PBT-co-PTMEG-40 | 135.1 | 22.1 | 190.5 | 24.3 | 370.0 |
Sample | Ø | n | k | t½ | G |
---|---|---|---|---|---|
(°C min−1) | - | (min−n) | (min) | (min−1) | |
PBT | 2 | 5.2 | 1.48 × 10−4 | 5.09 | 0.196 |
5 | 5.3 | 3.58 × 10−3 | 2.69 | 0.372 | |
10 | 5.1 | 4.91 × 10−2 | 1.67 | 0.599 | |
20 | 5.2 | 4.57 × 10−1 | 1.08 | 0.926 | |
PBT-co-PTMEG-10 | 2 | 4.7 | 1.21 × 10−4 | 6.35 | 0.157 |
5 | 4.7 | 2.32 × 10−3 | 3.33 | 0.300 | |
10 | 4.8 | 2.26 × 10−2 | 2.04 | 0.490 | |
20 | 5.2 | 4.57 × 10−1 | 1.35 | 0.741 | |
PBT-co-PTMEG-20 | 2 | 4.5 | 2.00 × 10−4 | 6.23 | 0.161 |
5 | 4.6 | 1.99 × 10−3 | 3.54 | 0.282 | |
10 | 5.2 | 7.30 × 10−3 | 2.41 | 0.415 | |
20 | 5.7 | 4.47 × 10−2 | 1.61 | 0.621 | |
PBT-co-PTMEG-30 | 2 | 5.3 | 1.05 × 10−5 | 8.00 | 0.125 |
5 | 5.6 | 2.37 × 10−4 | 4.21 | 0.238 | |
10 | 5.6 | 8.66 × 10−3 | 3.52 | 0.284 | |
20 | 5.9 | 2.71 × 10−2 | 1.74 | 0.575 | |
PBT-co-PTMEG-40 | 2 | 5.9 | 2.33 × 10−6 | 8.54 | 0.117 |
5 | 7.0 | 4.37 × 10−6 | 5.55 | 0.180 | |
10 | 7.2 | 5.71 × 10−5 | 3.68 | 0.272 | |
20 | 7.9 | 3.30 × 10−4 | 2.62 | 0.382 |
Sample | Relative Crystallinity (%) | ||||
---|---|---|---|---|---|
20 | 40 | 60 | 80 | ||
PBT | F(T) | 11.99 | 15.59 | 18.28 | 21.20 |
a | 1.47 | 1.48 | 1.48 | 1.48 | |
PBT-co-PTMEG-10 | F(T) | 20.51 | 27.22 | 31.64 | 35.95 |
a | 1.47 | 1.46 | 1.45 | 1.44 | |
PBT-co-PTMEG-20 | F(T) | 31.11 | 41.94 | 48.38 | 54.40 |
a | 1.78 | 1.72 | 1.68 | 1.66 | |
PBT-co-PTMEG-30 | F(T) | 31.99 | 41.10 | 47.06 | 52.85 |
a | 1.51 | 1.50 | 1.49 | 1.48 | |
PBT-co-PTMEG-40 | F(T) | 100.04 | 122.09 | 133.72 | 144.17 |
a | 1.99 | 1.94 | 1.90 | 1.86 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, H.-I.; Chen, C.-W.; Rwei, S.-P. Synthesis and Nonisothermal Crystallization Kinetics of Poly(Butylene Terephthalate-co-Tetramethylene Ether Glycol) Copolyesters. Polymers 2020, 12, 1897. https://doi.org/10.3390/polym12091897
Mao H-I, Chen C-W, Rwei S-P. Synthesis and Nonisothermal Crystallization Kinetics of Poly(Butylene Terephthalate-co-Tetramethylene Ether Glycol) Copolyesters. Polymers. 2020; 12(9):1897. https://doi.org/10.3390/polym12091897
Chicago/Turabian StyleMao, Hsu-I, Chin-Wen Chen, and Syang-Peng Rwei. 2020. "Synthesis and Nonisothermal Crystallization Kinetics of Poly(Butylene Terephthalate-co-Tetramethylene Ether Glycol) Copolyesters" Polymers 12, no. 9: 1897. https://doi.org/10.3390/polym12091897
APA StyleMao, H. -I., Chen, C. -W., & Rwei, S. -P. (2020). Synthesis and Nonisothermal Crystallization Kinetics of Poly(Butylene Terephthalate-co-Tetramethylene Ether Glycol) Copolyesters. Polymers, 12(9), 1897. https://doi.org/10.3390/polym12091897