Production of Chitosan/Hyaluronan Complex Nanofibers. Characterization and Physical Properties as a Function of the Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of PEC Solutions
2.2. Casting of PEC Films
2.3. Electrospinning of PEC
2.4. Two Phases Fibers (Core-Shell Nanofibers)
2.5. Microscopy for Fibers Characterization
2.6. Thermal Treatment of Films and Nanofibers
2.7. NMR Characterization of Films and Nanofibers
2.8. Stability and Swelling Degrees
2.9. Mechanical Properties of Nanofiber Mat and Film
3. Results and Discussion
3.1. Film Casting and Characterization
3.1.1. Kinetic of Thermal Treatment
3.1.2. Solubility and Swelling of PEC Films
3.1.3. Film Composition by NMR and Influence of Thermal Treatment
3.1.4. Film Made of Complex and Influence of Thermal Treatment
3.2. Film Mechanical Properties
Influence on Thermal Treatments
3.3. Nanofibers Production
3.3.1. Optimal Conditions
3.3.2. Stability of CS/HA/PEO Nanofibers in Aqueous Medium. Effect of the Thermal Treatment on the Solubility and Water Retention.
3.3.3. Fiber Diameter Determination
3.3.4. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jeong, S.I.; Krebs, M.D.; Bonino, C.A.; Samorezov, J.E.; Khan, S.A.; Alsberg, E. Electrospun chitosan–alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds. Tissue Eng. Part A 2011, 17, 59–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahire, J.J.; Robertson, D.D.; van Reenen, A.J.; Dicks, L.M.T. Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes. Biomed. Pharmacother. 2017, 86, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Srivastava, C.M.; Gupta, A.P.; Vats, M. Electrospun Nano-architectures for Tissue Engineering and Regenerative Medicine. In Nanoscience in Medicine Volume 1; Daima, H.K., PN, N., Ranjan, S., Dasgupta, N., Lichtfouse, E., Eds.; Springer: Berlin, Germany, 2020; pp. 213–248. [Google Scholar]
- Mengistu Lemma, S.; Bossard, F.; Rinaudo, M. Preparation of pure and stable chitosan nanofibers by electrospinning in the presence of poly(ethylene oxide). Int. J. Mol. Sci. 2016, 17, 1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, C.E.G.; Martínez, F.A.S.; Bossard, F.; Rinaudo, M. Biomaterials based on electrospun chitosan. Relation between processing conditions and mechanical properties. Polymers 2018, 10, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamman, J.H. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar. Drugs 2010, 8, 1305–1322. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Wang, X.; Liu, X.; Wang, R.; Deng, C.; Cui, F. Effects of ambient relative humidity and solvent properties on the electrospinning of pure hyaluronic acid nanofibers. J. Nanosci. Nanotechnol. 2013, 13, 4752–4758. [Google Scholar] [CrossRef]
- Pabjańczyk-Wlazło, E.; Krucińska, I.; Chrzanowski, M.; Szparaga, G.; Chaberska, A.; Kolesińska, B.; Boguń, M. Fabrication of Pure Electrospun Materials from Hyaluronic Acid. Fibres Text. East. Eur. 2017, 25, 45–52. [Google Scholar] [CrossRef]
- Brenner, E.K.; Schiffman, J.D.; Thompson, E.A.; Toth, L.J.; Schauer, C.L. Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. Carbohydr. Polym. 2012, 87, 926–929. [Google Scholar] [CrossRef]
- Chen, G.; Guo, J.; Nie, J.; Ma, G. Preparation, characterization, and application of PEO/HA core shell nanofibers based on electric field induced phase separation during electrospinning. Polymer 2016, 83, 12–19. [Google Scholar] [CrossRef]
- Gatej, I.; Popa, M.; Rinaudo, M. Role of the pH on hyaluronan behavior in aqueous solution. Biomacromolecules 2005, 6, 61–67. [Google Scholar] [CrossRef]
- Pakravan, M.; Heuzey, M.C.; Ajji, A. A fundamental study of chitosan/PEO electrospinning. Polymer 2011, 52, 4813–4824. [Google Scholar] [CrossRef]
- Ji, Y.; Ghosh, K.; Shu, X.Z.; Li, B.; Sokolov, J.C.; Prestwich, G.D.; Rafailovich, M.H. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 2006, 27, 3782–3792. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Liu, Y.; Fang, D.; Chen, J.; Peng, C.; Fei, X.; Nie, J. Hyaluronic acid/chitosan polyelectrolyte complexes nanofibers prepared by electrospinning. Mater. Lett. 2012, 74, 78–80. [Google Scholar] [CrossRef]
- Ma, H.; Chen, G.; Zhang, J.; Liu, Y.; Nie, J.; Ma, G. Facile fabrication of core-shell polyelectrolyte complexes nanofibers based on electric field induced phase separation. Polymer 2017, 110, 80–86. [Google Scholar] [CrossRef]
- Meng, X.; Perry, S.L.; Schiffman, J.D. Complex coacervation: Chemically stable fibers electrospun from aqueous polyelectrolyte solutions. ACS Macro Lett. 2017, 6, 505–511. [Google Scholar] [CrossRef]
- Penchev, H.; Paneva, D.; Manolova, N.; Rashkov, I. Novel electrospun nanofibers composed of polyelectrolyte complexes. Macromol. Rapid Commun. 2008, 29, 677–681. [Google Scholar] [CrossRef]
- Ishihara, M.; Kishimoto, S.; Nakamura, S.; Sato, Y.; Hattori, H. Polyelectrolyte complexes of natural polymers and their biomedical applications. Polymers 2019, 11, 672. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, W.; Lu, Y.; Wang, Z. Studies on chitosan and poly(acrylic acid) interpolymer complex. I. Preparation, structure, pH-sensitivity, and salt sensitivity of complex-forming poly(acrylic acid): Chitosan semi-interpenetrating polymer network. J. Appl. Polym. Sci. 1997, 65, 1445–1450. [Google Scholar] [CrossRef]
- Nista, S.V.G.; Bettini, J.; Mei, L.H.I. Coaxial nanofibers of chitosan–alginate–PEO polycomplex obtained by electrospinning. Carbohydr. Polym. 2015, 127, 222–228. [Google Scholar] [CrossRef]
- Petrova, V.A.; Chernyakov, D.D.; Poshina, D.N.; Gofman, I.V.; Romanov, D.P.; Mishanin, A.I.; Skorik, Y.A. Electrospun bilayer chitosan/hyaluronan material and its compatibility with mesenchymal stem cells. Materials 2019, 12, 2016. [Google Scholar] [CrossRef] [Green Version]
- Yamane, S.; Iwasaki, N.; Majima, T.; Funakoshi, T.; Masuko, T.; Harada, K.; Nishimura, S.I. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 2005, 26, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, Y.; Iwasaki, N.; Yamane, S.; Igarashi, T.; Majima, T.; Nonaka, S.; Harada, K.; Nishimura, S.-I.; Minami, A. Development of mature cartilage constructs using novel three-dimensional porous scaffolds for enhanced repair of osteochondral defects. J. Biomed. Mater. Res. Part A 2008, 86, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Yamane, S.; Iwasaki, N.; Kasahara, Y.; Harada, K.; Majima, T.; Monde, K.; Minami, A. Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J. Biomed. Mater. Res. Part A 2007, 81, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, N.; Kasahara, Y.; Yamane, S.; Igarashi, T.; Minami, A.; Nisimura, S.I. Chitosan-based hyaluronic acid hybrid polymer fibers as a scaffold biomaterial for cartilage tissue engineering. Polymers 2011, 3, 100–113. [Google Scholar] [CrossRef] [Green Version]
- Majima, T.; Irie, T.; Sawaguchi, N.; Funakoshi, T.; Iwasaki, N.; Harada, K.; Nishimura, S.I. Chitosan-based hyaluronan hybrid polymer fibre scaffold for ligament and tendon tissue engineering. Proc. Inst. Mech. Eng. Part. H 2007, 221, 537–546. [Google Scholar] [CrossRef]
- Dumont, M.; Villet, R.; Guirand, M.; Montembault, A.; Delair, T.; Lack, S.; David, L. Processing and antibacterial properties of chitosan-coated alginate fibers. Carbohydr. Polym. 2018, 190, 31–42. [Google Scholar] [CrossRef]
- Peniche, C.; Elvira, C.; San Roman, J. Interpolymer complexes of chitosan and polymethacrylic derivatives of salicylic acid: Preparation, characterization and modification by thermal treatment. Polymer 1998, 39, 6549–6554. [Google Scholar] [CrossRef]
- Peniche, C.; Argüelles-Monal, W.; Davidenko, N.; Sastre, R.; Gallardo, A.; San Román, J. Self-curing membranes of chitosan/PAA IPNs obtained by radical polymerization: Preparation, characterization and interpolymer complexation. Biomaterials 1999, 20, 1869–1878. [Google Scholar] [CrossRef]
- Bernabé, P.; Peniche, C.; Argüelles-Monal, W. Swelling behavior of chitosan/pectin polyelectrolyte complex membranes. Effect of thermal cross-linking. Polym. Bull. 2005, 55, 367–375. [Google Scholar]
- Cooper, A.; Bhattarai, N.; Kievit, F.M.; Rossol, M.; Zhang, M. Electrospinning of chitosan derivative nanofibers with structural stability in an aqueous environment. Phys. Chem. Chem. Phys. 2011, 13, 9969–9972. [Google Scholar] [CrossRef]
- Zotkin, M.A.; Vikhoreva, G.A.; Smotrina, T.V.; Derbenev, M.A. Thermal modification and study of the structure of chitosan films. Fibre Chem. 2004, 36, 16–20. [Google Scholar] [CrossRef]
- Vasiliu, S.; Popa, M.; Rinaudo, M. Polyelectrolyte capsules made of two biocompatible natural polymers. Eur. Polym. J. 2005, 41, 923–932. [Google Scholar] [CrossRef]
- Berregi, I.; Del Campo, G.; Caracena, R.; Miranda, J.I. Quantitative determination of formic acid in apple juices by 1H NMR spectrometry. Talanta 2007, 72, 1049–1053. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, N.; Edmondson, D.; Veiseh, O.; Matsen, F.A.; Zhang, M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 2005, 26, 6176–6184. [Google Scholar] [CrossRef] [PubMed]
Charge Ratio (Rc) NH2/COOH | Weight Ratio NH2/COOH | pH | Swelling Degree (g Water/g) before Thermal Treatment | Solubility (%) before Thermal Treatment | Swelling Degree (g Water/g) after Thermal Treatment | Solubility (%) after Thermal Treatment |
---|---|---|---|---|---|---|
0.5 | 0.21 | 3 | 3.2 | 24.1 | 4.6 | 37.2 |
7.4 | 16.8 | 68.7 | 10.0 | 59.3 | ||
11 | ---- | High * | 22.6 * | 69.5 * | ||
1 | 0.42 | 3 | 2.6 | 10.1 | 3.6 | 11.5 |
7.4 | 14.9 | 44.0 | 4.7 | 37.7 | ||
11 | 21.8 | 61.0 | 11.4 | 39.4 | ||
1.8 | 0.77 | 3 | 4.5 | 14.5 | 3.8 | 9.8 |
7.4 | 9.3 | 35.2 | 3.9 | 25.1 | ||
11 | 16.0 | 45.1 | 6.8 | 25.9 | ||
2.35 | 1.0 | 3 | 6.6 | 37.1 | 3.8 | 8.4 |
7.4 | 7.6 | 33.5 | 4.3 | 23.2 | ||
11 | 13.9 | 35.4 | 4.3 | 21.3 | ||
3 | 1.26 | 3 | 7.0 | 46.9 | 3.4 | 7.1 |
7.4 | 5.5 | 26.9 | 3.6 | 17.2 | ||
11 | 12.1 | 28.5 | 4.1 | 21.3 |
Charge Ratio NH2/COOH | Weight Ratio NH2/COOH | Pump Rate (mL/h) | Tip to Collector Distance (cm) | Applied Voltage (kV) | Electrospun Products |
---|---|---|---|---|---|
0.5 | 0.21 | 0.08–0.12 | 17 | 18–25 | Fibers, few beads |
1.0 | 0.42 | 0.15–0.2 | 16–17 | 24–26 | Fibers |
1.8 | 0.77 | 0.15–0.2 | 17 | 24 | Fibers |
2.35 | 1.0 | 0.10–0.15 | 16–17 | 21–29 | Fibers |
3.0 | 1.26 | 0.12–0.17 | 16–17 | 21–23 | Fibers |
Rc | Weight Loss (%) after TT | Remaining Polymer (%) after EtOH/H2O Washing | Swelling Degree (gH2O/g) at pH = 7.4 | Solubility (%) at pH = 7.4 |
---|---|---|---|---|
2.35 | 9.8 ± 2.5 | 69.8 ± 8.1 | 3.3 ± 0.3 | 12.2 |
3.0 | 10.9 ± 0.4 | 73.79 ± 0.18 | 3.7 ± 0.5 | 13.9 |
Composition | Average Density (g/cm3) | Ratio Density Film/Fibers | |
---|---|---|---|
Casted Film | Electrospun Nanofiber Mat | ||
CS | 0.846 | 0.0295 | 28.7 |
Rc = 1.0 | ------ | 0.0383 | ---- |
Rc = 1.8 | 0.949 | 0.0284 | 33.4 |
Rc = 2.35 | 1.127 | 0.0395 | 28.5 |
Rc = 3.0 | 1.163 | 0.0512 | 22.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia Garcia, C.E.; Soltero Martínez, F.A.; Bossard, F.; Rinaudo, M. Production of Chitosan/Hyaluronan Complex Nanofibers. Characterization and Physical Properties as a Function of the Composition. Polymers 2020, 12, 2004. https://doi.org/10.3390/polym12092004
Garcia Garcia CE, Soltero Martínez FA, Bossard F, Rinaudo M. Production of Chitosan/Hyaluronan Complex Nanofibers. Characterization and Physical Properties as a Function of the Composition. Polymers. 2020; 12(9):2004. https://doi.org/10.3390/polym12092004
Chicago/Turabian StyleGarcia Garcia, Christian Enrique, Félix Armando Soltero Martínez, Frédéric Bossard, and Marguerite Rinaudo. 2020. "Production of Chitosan/Hyaluronan Complex Nanofibers. Characterization and Physical Properties as a Function of the Composition" Polymers 12, no. 9: 2004. https://doi.org/10.3390/polym12092004
APA StyleGarcia Garcia, C. E., Soltero Martínez, F. A., Bossard, F., & Rinaudo, M. (2020). Production of Chitosan/Hyaluronan Complex Nanofibers. Characterization and Physical Properties as a Function of the Composition. Polymers, 12(9), 2004. https://doi.org/10.3390/polym12092004