Design and Parameter Research of Time-Harmonic Magnetic Field Sensor Based on PDMS in Microfluidic Technology
Abstract
:1. Introduction
2. PDMS-Based Chip Design and Fabrication
3. Theoretical Analysis
4. Simulation and Experimental Discussion
4.1. Simulation Analysis
4.2. Discussion of 3-D Solenoid Coils Turns
4.3. Discussion of Excitation Frequency
4.4. Sensor Measures Multi-Size Contaminants
4.5. Throughput Experiments
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mauntz, M.R.; Gegner, J.; Kuipers, U.; Klingau, S. A sensor system for online oil condition monitoring of operating components. Tribol. Fundam. Adv. 2013, 11, 305–321. [Google Scholar]
- Dupuis, R. Application of oil debris monitoring for wind turbine gearbox prognostics and health management. In Proceedings of the Annual Conference of the Prognostics and Health Management Society, Portland, OR, USA, 10–14 October 2010; pp. 10–16. [Google Scholar]
- Zhang, X.; Zhang, H.; Sun, Y.; Chen, H.; Zhang, Y. Research on the output characteristics of microfluidic inductive sensor. J. Nanomater. 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sun, W. Quantitative estimation technique for wear amounts by real time measurement of wear debris in lubricating oil. Adv. Mater. Res. Trans. Tech. Publ. 2011, 308, 647–650. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, P.; Wang, H.; Li, Y.; Lv, C. Ultrasonic echo waveshape features extraction based on QPSO matching pursuit for online wear debris discrimination. Mech. Syst. Signal Process. 2015, 60, 301–315. [Google Scholar] [CrossRef]
- Kumar, M.; Shankar, M.; Mohan, M. Advancement and current status of wear debris analysis for machine condition monitoring: A review. Ind. Lubr. Tribol. 2013, 65, 3–11. [Google Scholar] [CrossRef]
- Murali, S.; Xia, X.; Jagtiani, A.; Carletta, J.; Zhe, J. Capacitive coulter counting: Detection of metal wear particles in lubricant using a microfluidic device. Smart Mater. Struct. 2009, 18, 037001. [Google Scholar] [CrossRef]
- Potyrailo, R.; Tokarev, I.; Ottikkutti, P.; Kuzhiyil, N.; Mihok, J.; Anzini, C.; Shartzer, S. Multivariable electrical resonant sensors for independent quantitation of aging and external contaminants in lubricating oils. IEEE Sens. J. 2019, 68, 1458–1466. [Google Scholar] [CrossRef]
- Hong, W.; Wang, S.; Tomovic, M.; Liu, H.; Wang, X. A new debris sensor based on dual excitation sources for online debris monitoring. Meas. Sci. Technol. 2015, 16, 12. [Google Scholar] [CrossRef]
- Guo, S.; Chen, R.; Li, H.; Liu, Y. Identify severity bug report with distribution imbalance by CR-SMOTE and ELM. Int. J. Softw. Eng. Knowl. Eng. 2019, 29, 139–175. [Google Scholar] [CrossRef]
- Li, S.; Ihli, J.; Marchant, W.; Zeng, M.; Chen, L.; Wehbe, K.; Cinque, G.; Cespedes, O.; Kapure, N.; Meldrum, F. Synchrotron FTIR imaging of mineralization in a microfluidic device. Lab Chip 2017, 17, 1616. [Google Scholar] [CrossRef]
- Bai, C.Z.; Zhang, H.P.; Zeng, L.; Zhao, X.P.; Yu, Z.L. High-throughput sensor to detect hydraulic oil contamination based on microfluidics. IEEE Sens. J. 2019, 19, 8590–8596. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhang, H.P.; Zeng, L.; Huang, S. Magnetization model and detection mechanism of a microparticle in a harmonic magnetic field. IEEE ASME Trans. Mechat. 2019, 24, 1882–1891. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, H.; Zeng, L.; Chen, H.; Sun, Y. Determination of metal particles in oil using a microflfluidic chip-based inductive sensor. Instrum. Sci. Technol. 2016, 44, 259–269. [Google Scholar] [CrossRef]
- Zhang, H.; Chon, C.H.; Pan, X.; Li, D.Q. Methods for counting particles in microfluidic applications. Microfluid Nanofluid 2009, 7, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Zhang, H.; Wang, W.; Zhao, X.; Chen, H.; Zeng, N. Inductive-capacitive dual-mode oil detection sensor based on magnetic nanoparticle material. IEEE Sens. J. 2020. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, H.; Wang, Q.; Zhang, X. Monitoring of non-ferrous wear debris in hydraulic oil by detecting the equivalent resistance of inductive sensors. Micromachines 2018, 9, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, H.; Wang, X.Y.; Li, H.C.; Luo, J.F.; Feng, S. An inductive debris sensor for a large-diameter lubricating oil circuit based on a high-gradient magnetic field. Appl. Sci. 2019, 9, 1546. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Zhu, X.; Han, Y. High throughput wear debris detection in lubricants using a resonance frequency division multiplexed sensor. Tribol. Lett. 2013, 51, 453–460. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, H.; Qiao, W.; Han, X.; Zeng, L.; Shi, H. Oil metal debris detection sensor using ferrite core and flat channel for sensitivity improvement and high throughput. IEEE Sens. J. 2020, 20, 7303–7309. [Google Scholar] [CrossRef]
- Zeng, L.; Yu, Z.; Zhang, H.; Zhang, X.; Chen, H. A high sensitive multi-parameter micro sensor for the detection of multi-contamination in hydraulic oil. Sens. Actuators A Phys. 2018, 282, 197–205. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, Z.; Zheng, J.; Chen, L.; Wu, S.; Wang, S.; Yan, Z.; Pan, X. The effects of position on the wear debris detection with planar inductor. Sensors 2019, 19, 4961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timur, K.; Erivelton, G.; Olga, D.; Artur, K.; Denis, B. Chaotic oscillators as inductive sensors: Theory and practice. Sensors 2019, 19, 4314. [Google Scholar]
- Du, L.; Zhe, J.; Carletta, J. Real-time monitoring of wear debris in lubrication oil using a microfluidic inductive Coulter counting device. Microfluid Nanofluidics 2010, 9, 1241–1245. [Google Scholar] [CrossRef]
- Ren, Y.; Li, W.; Zhao, G. Inductive debris sensor using one energizing coil with multiple sensing coils for sensitivity improvement and high throughput. Tribol. Int. 2018, 128, 96–103. [Google Scholar] [CrossRef]
- Ren, Y.; Zhao, G.; Qian, M.; Feng, Z. A highly sensitive triple-coil inductive debris sensor based on an effective unbalance compensation circuit. Meas. Sci. Technol. 2019, 30, 015108. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Q. Investigation of the design and fault prediction method for an abrasive particle sensor used in wind turbine gearbox. Energies 2020, 13, 365. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zeng, L.; Teng, H.; Zhang, X. A novel on-chip impedance sensor for the detection of particle contamination in hydraulic oil. Micromachines 2017, 8, 249. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Wang, W.; Rogers, F.; Zhang, H.; Zhang, X.; Yang, D. A high sensitivity micro impedance sensor based on magnetic focusing for oil condition monitoring. IEEE Sens. J. 2020, 20, 3813–3821. [Google Scholar] [CrossRef]
- Feng, B.H.; Du, Y.P. Discussion on monitoring of wear particles in inductive sensor. Coal Mine Mach. 2005, 10, 49–52. [Google Scholar]
- Lei, Y.Z. Time-Harmonic Electromagnetic Field Analysis Method; Science Press: Beijing, China, 2000. [Google Scholar]
- Bai, C.Z.; Zhang, H.P.; Zeng, L.; Zhao, X.P.; Ma, L.H. Inductive magnetic nanoparticle sensor based on microfluidic chip oil detection technology. Micromachines 2020, 11, 183. [Google Scholar] [CrossRef] [Green Version]
The Size of Iron Particle | SNR Value | SNR Error | Calibration SNR | The Size of Copper Particle | SNR Value | SNR Error | Calibration SNR |
---|---|---|---|---|---|---|---|
10 μm | 1.41 | 0.22 | 1.41 ± 0.22 | 60 μm | 1.47 | 0.2 | 1.47 ± 0.2 |
20 μm | 3.45 | 0.3 | 3.45 ± 0.3 | 70 μm | 3.01 | 0.31 | 3.01 ± 0.31 |
30 μm | 6.92 | 0.4 | 6.92 ± 0.4 | 80 μm | 5.09 | 0.34 | 5.09 ± 0.34 |
40 μm | 11.08 | 0.3 | 11.08 ± 0.3 | 90 μm | 7.27 | 0.27 | 7.27 ± 0.27 |
50 μm | 14.57 | 0.47 | 14.57 ± 0.47 | 100 μm | 8.32 | 0.31 | 8.32 ± 0.31 |
60 μm | 16.06 | 0.5 | 16.06 ± 0.5 | 110 μm | 10.36 | 0.5 | 10.36 ± 0.5 |
70 μm | 22.8 | 0.6 | 22.8 ± 0.6 | 120 μm | 11.09 | 0.53 | 11.09 ± 0.53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, C.; Zhang, H.; Wang, C.; Ilerioluwa Joseph, L.; Wang, Q.; Xie, Y.; Li, G. Design and Parameter Research of Time-Harmonic Magnetic Field Sensor Based on PDMS in Microfluidic Technology. Polymers 2020, 12, 2022. https://doi.org/10.3390/polym12092022
Bai C, Zhang H, Wang C, Ilerioluwa Joseph L, Wang Q, Xie Y, Li G. Design and Parameter Research of Time-Harmonic Magnetic Field Sensor Based on PDMS in Microfluidic Technology. Polymers. 2020; 12(9):2022. https://doi.org/10.3390/polym12092022
Chicago/Turabian StyleBai, Chenzhao, Hongpeng Zhang, Chengjie Wang, Lebile Ilerioluwa Joseph, Qiang Wang, Yucai Xie, and Guobin Li. 2020. "Design and Parameter Research of Time-Harmonic Magnetic Field Sensor Based on PDMS in Microfluidic Technology" Polymers 12, no. 9: 2022. https://doi.org/10.3390/polym12092022
APA StyleBai, C., Zhang, H., Wang, C., Ilerioluwa Joseph, L., Wang, Q., Xie, Y., & Li, G. (2020). Design and Parameter Research of Time-Harmonic Magnetic Field Sensor Based on PDMS in Microfluidic Technology. Polymers, 12(9), 2022. https://doi.org/10.3390/polym12092022