Synthesis, Physical Properties and Enzymatic Degradation of Biodegradable Nanocomposites Fabricated Using Poly(Butylene Carbonate-Co-Terephthalate) and Organically Modified Layered Zinc Phenylphosphonate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of PBCT/m-PPZn Nanocomposites
2.3. Analytical Procedures
3. Results
3.1. Synthesis, Structure and Morphology of PBCT-85/m-PPZn Nanocomposites
3.2. Physical Properties of PBCT/m-PPZn Nanocomposites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Feng, J.; Zhuo, R.-X.; Zhang, X.-Z. Construction of functional aliphatic polycarbonates for biomedical applications. Prog. Polym. Sci. 2012, 37, 211–236. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Moncada, A.I. Tuning the selectivity of the oxetane and CO2 coupling process catalyzed by (salen) CrCl/n-Bu4NX: Cyclic carbonate formation vs aliphatic polycarbonate production. Macromolecules 2010, 43, 5996–6003. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Wilson, S.J. What’s new with CO2? Recent advances in its copolymerization with oxiranes. Green Chem. 2012, 14, 2665–2671. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Mahler, A. Polymers of carbonic acid 18: Polymerizations of cyclobis (hexamethylene carbonate) by means of BuSnCl3 or Sn (II) 2-ethylhexanoate. Polymer 1996, 37, 4383–4388. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Mahler, A. Polymers of carbonic acid. XVII. Polymerization of cyclobis (tetramethylene carbonate) by means of BuSnCl3 and Sn (II) 2-ethylhexanoate. J. Polym. Sci. Part A: Polym. Chem. 1996, 34, 2399–2406. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kaihara, S.; Toshima, K.; Matsumura, S. High-molecular-weight polycarbonates synthesized by enzymatic ROP of a cyclic carbonate as a green process. Macromol. Biosci. 2009, 9, 968–978. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, W.; Li, C.; Zhang, D.; Xiao, Y.; Guan, G.; Zheng, L. Aliphatic-aromatic poly (butylene carbonate-co-terephthalate) random copolymers: Synthesis, cocrystallization, and composition-dependent properties. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Park, G.H.; Lee, S.; Park, S.H.; Eo, S.C.; Kim, J.G.; Lee, B.Y. Chopping high-molecular weight poly (1, 4-butylene carbonate-co-aromatic ester) s for macropolyol synthesis. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Wang, H.-T.; Chen, E.-C.; Wu, T.-M. Crystallization and enzymatic degradation of maleic acid-grafted poly (butylene adipate-co-terephthalate)/organically modified layered zinc phenylphosphonate nanocomposites. J. Polym. Environ. 2020, 28, 834–843. [Google Scholar] [CrossRef]
- Chen, Y.-A.; Chen, E.-C.; Wu, T.-M. Organically modified layered zinc phenylphosphonate reinforced stereocomplex-type poly (lactic acid) nanocomposites with highly enhanced mechanical properties and degradability. J. Mater. Sci. 2015, 50, 7770–7778. [Google Scholar] [CrossRef]
- Wei, Z.; Lin, J.; Wang, X.; Huang, L.; Yu, J.; Li, F. In situ polymerization of biodegradable poly (butylene-co-succinate terephthlate) nanocomposites and their real-time tracking of microstructure. Composites 2015, 117, 121–129. [Google Scholar] [CrossRef]
- Salehabadi, A.; Bakar, M.A.; Bakar, N.H.H.A. Effect of organo-modified nanoclay on the thermal and bulk structural properties of poly (3-hydroxybutyrate)-epoxidized natural rubber blends: Formation of multi-components biobased nanohybrids. Materials 2014, 7, 4508–4523. [Google Scholar] [CrossRef] [PubMed]
- Ciou, C.-Y.; Li, S.-Y.; Wu, T.-M. Morphology and degradation behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/layered double hydroxides composites. Eur. Polym. J. 2014, 59, 136–143. [Google Scholar] [CrossRef]
- Pan, P.; Liang, Z.; Cao, A.; Inoue, Y. Layered metal phosphonate reinforced poly (L-lactide) composites with a highly enhanced crystallization rate. ACS Appl. Mater. Interfaces 2009, 1, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wang, Y.; He, D.; Xu, Y.; Li, Q.; Shen, C. Nucleation effect of layered metal phosphonate on crystallization of isotactic polypropylene. Polym. Test. 2014, 34, 131–139. [Google Scholar] [CrossRef]
- Yu, F.; Pan, P.; Nakamura, N.; Inoue, Y. Nucleation effect of layered metal phosphonate on crystallization of bacterial poly [(3-hydroxybutyrate)-co-(3-hydroxyhexanoate)]. Macromol. Mater. Eng. 2011, 296, 103–112. [Google Scholar] [CrossRef]
- Zhang, Y.; Scott, K.J.; Clearfield, A. Intercalation of alkylamines into dehydrated and hydrated zinc phenyiphosphonates. J. Mater. Chem. 1995, 5, 315–318. [Google Scholar] [CrossRef]
- Poojary, D.M.; Clearfield, A. Coordinative intercalation of alkylamines into layered zinc phenylphosphonate. Crystal structures from X-ray powder diffraction data. J. Am. Chem. Soc. 1995, 117, 11278–11284. [Google Scholar] [CrossRef]
- Strobl, G.; Schneider, M. Direct evaluation of the electron density correlation function of partially crystalline polymers. J. Polym. Sci. Polym. Phys. Ed. 1980, 18, 1343–1359. [Google Scholar] [CrossRef]
- Barbi, V.; Funari, S.S.; Gehrke, R.; Scharnagl, N.; Stribeck, N. SAXS and the gas transport in polyether-b lock-polyamide copolymer membranes. Macromolecules 2003, 36, 749–758. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, G.; Shi, Y.; Song, P.; Zhan, M.; Zhang, W. Isothermal crystallization and mechanical properties of poly(butylene succinate)/layered double hydroxide nanocomposites. J. Polym. Res. 2012, 19, 9930. [Google Scholar] [CrossRef]
- Ma, P.; Jiang, L.; Yu, M.; Dong, W.; Chen, M. Green antibacterial nanocomposites from poly(lactide)/poly(butylene adipate-co-terephthalate)/nanocrystal cellulose-silver nanohybrids. ACS Sustain. Chem. Eng. 2016, 4, 6417–6426. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Chen, Q.; Xi, Z.; Wang, C.; Chen, X.; Feng, X.; Liang, R.; Yang, J. Modulated crystallization behavior, polymorphic crystalline structure and enzymatic degradation of poly (butylene adipate): Effects of layered metal phosphonate. Eur. Polym. J. 2015, 72, 222–237. [Google Scholar] [CrossRef]
- Nalawade, P.; Aware, B.; Kadam, V.; Hirlekar, R. Layered double hydroxides: A review. J. Sci. Ind. Res. 2009, 68, 267–272. [Google Scholar]
- Wei, C.-K.; Ding, S.-J. Dual-functional bone implants with antibacterial ability and osteogenic activity. J. Mater. Chem. B 2017, 5, 1943–1953. [Google Scholar] [CrossRef] [PubMed]
Polymer | Feed Ratio [DMC]/[DMT] (mol %) | Polymer Ratio a [DMC]/[DMT] (mol %) | Mw (g/mol) × 104 | Mn (g/mol) × 104 | PDI | Tm (°C) |
---|---|---|---|---|---|---|
PBCT-85 | 85/15 | 85.8:14.2 | 3.81 | 2.02 | 1.89 | 33.7 |
Sample | LP (nm) | lc (nm) | la (nm) | la/LP (%) | Xc (%) |
---|---|---|---|---|---|
PBCT-85 | 12.80 | 2.72 | 10.08 | 78.73 | 39.5 |
1 wt% PBCT-85/DDA-PPZn | 12.84 | 2.76 | 10.08 | 78.78 | 39.6 |
3 wt% PBCT-85/DDA-PPZn | 12.80 | 2.73 | 10.07 | 78.70 | 39.4 |
5 wt% PBCT-85/DDA-PPZn | 12.80 | 2.72 | 10.08 | 78.77 | 39.5 |
1 wt% PBCT-85/ODA-PPZn | 13.01 | 2.77 | 10.24 | 78.71 | 39.7 |
3 wt% PBCT-85/ODA-PPZn | 13.70 | 2.92 | 10.78 | 78.70 | 39.6 |
5 wt% PBCT-85/ODA-PPZn | 13.80 | 2.94 | 10.86 | 78.70 | 39.7 |
Sample | aTdmax (°C) | E′ at −70 °C (MPa) | E′ at 20 °C (MPa) | Weight Loss (%) |
---|---|---|---|---|
PBCT-85 | 340.1 | 306 ± 31 | 42 ± 10 | 100 |
1 wt% PBCT-85/DDA-PPZn | 354.1 | 473 ± 25 | 62 ± 4 | 82.8 |
3 wt% PBCT-85/DDA-PPZn | 354.4 | 624 ± 8 | 71 ± 4 | 72.5 |
5 wt% PBCT-85/DDA-PPZn | 354.9 | 698 ± 4 | 83 ± 9 | 47.8 |
1 wt% PBCT-85/ODA-PPZn | 354.3 | 441 ± 4 | 51 ± 4 | 52.0 |
3 wt% PBCT-85/ODA-PPZn | 355.1 | 610 ± 12 | 60 ± 3 | 45.6 |
5 wt% PBCT-85/ODA-PPZn | 355.5 | 684 ± 5 | 72 ± 6 | 30.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, L.-Y.; Chen, E.-C.; Wang, J.-M.; Wu, T.-M. Synthesis, Physical Properties and Enzymatic Degradation of Biodegradable Nanocomposites Fabricated Using Poly(Butylene Carbonate-Co-Terephthalate) and Organically Modified Layered Zinc Phenylphosphonate. Polymers 2020, 12, 2149. https://doi.org/10.3390/polym12092149
Tseng L-Y, Chen E-C, Wang J-M, Wu T-M. Synthesis, Physical Properties and Enzymatic Degradation of Biodegradable Nanocomposites Fabricated Using Poly(Butylene Carbonate-Co-Terephthalate) and Organically Modified Layered Zinc Phenylphosphonate. Polymers. 2020; 12(9):2149. https://doi.org/10.3390/polym12092149
Chicago/Turabian StyleTseng, Li-Ying, Erh-Chiang Chen, Jie-Mao Wang, and Tzong-Ming Wu. 2020. "Synthesis, Physical Properties and Enzymatic Degradation of Biodegradable Nanocomposites Fabricated Using Poly(Butylene Carbonate-Co-Terephthalate) and Organically Modified Layered Zinc Phenylphosphonate" Polymers 12, no. 9: 2149. https://doi.org/10.3390/polym12092149
APA StyleTseng, L. -Y., Chen, E. -C., Wang, J. -M., & Wu, T. -M. (2020). Synthesis, Physical Properties and Enzymatic Degradation of Biodegradable Nanocomposites Fabricated Using Poly(Butylene Carbonate-Co-Terephthalate) and Organically Modified Layered Zinc Phenylphosphonate. Polymers, 12(9), 2149. https://doi.org/10.3390/polym12092149