Thermo-Tunable Pores and Antibiotic Gating Properties of Bovine Skin Gelatin Gels Prepared with Poly(n-isopropylacrylamide) Network
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Porous NGHH Membranes
2.3. Characterization of the Stability and Biocompatibility of NGHHs
2.4. Swelling Ratio of NGHH
2.5. Drug Loading and Releasing
2.6. Antibacterial Activity Testing
3. Results and Discussion
3.1. Characterization of the Thermoresponsive Porous NGHH
3.2. Surface Performance of the Thermoresponsive NGHH
3.3. Thermoresponsive Drug Release of Porous NGHHs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Church, D.; Elsayed, S.; Reid, O.; Winston, B.; Lindsay, R. Burn wound infections. Clin. Microbiol. Rev. 2006, 19, 403–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousa, H.-L. Aerobic, anaerobic and fungal burn wound infections. J. Hosp. Infect. 1997, 37, 317–323. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, T.; Qu, Y.; Zhou, Y.; Zheng, Y.; Huang, C.; Zhang, Y.; Yu, Q.; Chen, H. Smart, Photothermally Activated, Antibacterial Surfaces with Thermally Triggered Bacteria-Releasing Properties. ACS Appl. Mater. Interface 2020, 12, 21283–21291. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zeng, Y.; Wu, H.B.; Zhou, C.W.; Tao, L. An antioxidant self-healing hydrogel for 3D cell cultures. J. Mater. Chem. B 2020, 8, 1383–1388. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.W.; Lim, K.; Bandini, S.B.; Harris, G.M.; Spechler, J.A.; Arnold, C.B.; Fardel, R.; Schwarzbauer, J.E.; Schwartz, J. Controlling the Surface Chemistry of a Hydrogel for Spatially Defined Cell Adhesion. ACS Appl. Mater. Interface 2019, 11, 15411–15416. [Google Scholar] [CrossRef]
- Hu, X.Y.; Wang, Y.M.; Zhang, L.L.; Xu, M.; Zhang, J.F.; Dong, W. Photopatterned salecan composite hydrogel reinforced with alpha-Mo2C nanoparticles for cell adhesion. Carbohydr. Polym. 2018, 199, 119–128. [Google Scholar] [CrossRef]
- Roth-Konforti, M.E.; Comune, M.; Halperin-Sternfeld, M.; Grigoriants, I.; Shabat, D.; Adler-Abramovich, L. UV Light-Responsive Peptide-Based Supramolecular Hydrogel for Controlled Drug Delivery. Macromol. Rapid Commun. 2018, 39, 1800588. [Google Scholar] [CrossRef]
- Ganguly, S.; Maity, P.P.; Mondal, S.; Das, P.; Bhawal, P.; Dhara, S.; Das, N.C. Polysaccharide and poly(methacrylic acid) based biodegradable elastomeric biocompatible semi-IPN hydrogel for controlled drug delivery. Mater. Sci. Eng. C 2018, 92, 34–51. [Google Scholar] [CrossRef]
- van Rensburg, A.J.; Davies, N.H.; Oosthuysen, A.; Chokoza, C.; Zilla, P.; Bezuidenhout, D. Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels. Acta Biomater. 2017, 49, 89–100. [Google Scholar] [CrossRef]
- Maeda, S.; Kato, T.; Kogure, H.; Hosoya, N. Rapid response of thermo-sensitive hydrogels with porous structures. Appl. Phys. Lett. 2015, 106, 171909. [Google Scholar] [CrossRef]
- Nie, L.; Zhang, G.H.; Hou, R.X.; Xu, H.P.; Li, Y.P.; Fu, J. Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-beta 1 from porous PLGA microspheres. Colloids Surf. B 2015, 125, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Elbert, D.L. Liquid-liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review. Acta Biomater 2011, 7, 31–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fragal, V.H.; Catori, D.M.; Fragal, E.H.; Garcia, F.P.; Nakamura, C.V.; Rubira, A.F.; Silva, R. Two-dimensional thermoresponsive submicroporous substrate for accelerated cell tissue growth and facile detachment. J. Colloid Interface Sci. 2019, 547, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Wang, G.; Ma, A.; Wang, W.; Chen, H.; Bai, L.; Yang, H.; Wei, D.; Yang, L. Surface Engineering of Porous Carbon for Self-Healing Nanocomposite Hydrogels by Mussel-Inspired Chemistry and PET-ATRP. ACS Appl. Mater. Interfaces 2019, 11, 38126–38135. [Google Scholar] [CrossRef]
- Murakawa, K.; King, D.R.; Sun, T.L.; Guo, H.L.; Kurokawa, T.; Gong, J.P. Polyelectrolyte complexation via viscoelastic phase separation results in tough and self-recovering porous hydrogels. J. Mater. Chem. B 2019, 7, 5296–5305. [Google Scholar] [CrossRef]
- Wei, J.S.; Ding, C.; Zhang, P.; Ding, H.; Niu, X.Q.; Ma, Y.Y.; Li, C.; Wang, Y.G.; Xiong, H.M. Robust Negative Electrode Materials Derived from Carbon Dots and Porous Hydrogels for High-Performance Hybrid Supercapacitors. Adv. Mater. 2019, 31, 1806197. [Google Scholar] [CrossRef]
- Naficy, S.; Le, T.Y.L.; Oveissi, F.; Lee, A.; Hung, J.C.; Wise, S.G.; Winlaw, D.S.; Dehghani, F. Highly Porous, Biocompatible Tough Hydrogels, Processable via Gel Fiber Spinning and 3D Gel Printing. Adv. Mater. Interface 2020, 7, 1901770. [Google Scholar] [CrossRef] [Green Version]
- Ying, G.L.; Jiang, N.; Mahar, S.; Yin, Y.X.; Chai, R.R.; Cao, X.; Yang, J.Z.; Miri, A.K.; Hassan, S.; Zhang, Y.S. Aqueous Two-Phase Emulsion Bioink-Enabled 3D Bioprinting of Porous Hydrogels. Adv. Mater. 2018, 30, 1805460. [Google Scholar] [CrossRef]
- Putra, R.N.; Lee, Y.H. Entrapment of micro-sized zeolites in porous hydrogels: Strategy to overcome drawbacks of zeolite particles and beads for adsorption of ammonium ions. Sep. Purif. Technol. 2020, 237, 116351. [Google Scholar] [CrossRef]
- Matsuo, E.S.; Tanaka, T. Kinetics of discontinuous volume–phase transition of gels. J. Chem. Phys. 1988, 89, 1695–1703. [Google Scholar] [CrossRef]
- Okajima, T.; Harada, I.; Nishio, K.; Hirotsu, S. Kinetics of volume phase transition in poly(N-isopropylacrylamide) gels. J. Chem. Phys. 2002, 116, 9068–9077. [Google Scholar] [CrossRef]
- Kuang, M.; Wang, D.; Gao, M.; Hartmann, J.; Mohwald, H. A Bio-inspired Route to Fabricate Submicrometer-Sized Particles with Unusual Shapes−Mineralization of Calcium Carbonate within Hydrogel Spheres. Chem. Mater. 2005, 17, 656–660. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Vats, K.; Yates, M.Z.; Benoit, D.S. Two-dimensional patterns of poly(Nisopropylacrylamide) microgels to spatially control fibroblast adhesion and temperature-responsive detachment. Langmuir 2013, 29, 12183–12193. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Lu, X.; Zhu, D.; Lu, Q. Targeted grafting of thermoresponsive polymers from a penetrative honeycomb structure for cell sheet engineering. Soft Matter. 2015, 11, 7420–7427. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, W.; Xie, R.; Ju, X.-J.; Chu, L.-Y. Stimuli-responsive smart gating membranes. Chem. Soc. Rev. 2016, 45, 460–475. [Google Scholar] [CrossRef]
- Hou, X. Smart gating multi-scale pore/channel-based membranes. Adv. Mater. 2016, 28, 7049–7064. [Google Scholar] [CrossRef]
- Guo, J.-W.; Wu, Y.-H.; Wei, P.-L.; Huang, Y.-J.; Chen, J.-K. Immobilization of antibody conjugated ZnS quantum dots onto poly(2,6-dimethyl-1,4-phenylene oxide) nanofibers with Poly(Nisopropylacrylamide) grafts as reversibly fluorescence immunoassay. Dyes Pigments 2018, 159, 198–208. [Google Scholar] [CrossRef]
- Luo, F.; Zhao, Q.; Xie, R.; Cao, Y.; Ju, X.J.; Wang, W.; Liu, Z.; Chu, L.Y. Effects of fabrication conditions on the microstructures and performances of smart gating membranes with in situ assembled nanogels as gates. J. Membr. Sci. 2016, 519, 32–44. [Google Scholar] [CrossRef]
- Young, S.; Wong, M.; Tabata, Y. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 2005, 109, 256–274. [Google Scholar] [CrossRef]
- Yang, H.-W.; Chen, J.-K.; Kuo, S.-W.; Lee, A.-W. Degradable coronas comprising polyelectrolyte complexes of PDMAEMA and gelatin for pH-triggered antibiotic release. Polymer 2014, 55, 2678–2687. [Google Scholar] [CrossRef]
- Guo, J.-W.; Lin, F.-P.; Chang, C.-J.; Lu, C.-H.; Chen, J.-K. Sandwich-structured displays encapsulating polystyrene microspheres coated with Fe3O4 nanoparticles for label-free biosensing for electrorheological operation. Sens. Actuator B. 2020, 304, 127185. [Google Scholar] [CrossRef]
- Mora-Boza, A.; Włodarczyk-Biegun, M.K.; del Campo, A.; Vázquez-Lasa, B.; Román, J.S. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features. Biomater. Sci. 2020, 8, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikkene, D.; Arteni, A.A.; Song, H.; Laroui, H.; Six, J.; Ferji, K. Synthesis of dextran-based chain transfer agent for RAFT-mediated polymerization and glyco-nanoobjects formulation. Carbohydr. Polym. 2020, 234, 115943. [Google Scholar] [CrossRef] [PubMed]
- Li, K.W.; Zhou, C.; Liu, S.L.; Yao, F.; Fu, G.D.; Xu, L.Q. Preparation of mechanically-tough and thermo-responsive polyurethanepoly(ethylene glycol) hydrogels. React Funct. Polm. 2017, 117, 81–88. [Google Scholar] [CrossRef]
- de Solorzano, I.O.; Alejo, T.; Abad, M.; Bueno-Alejo, C.; Mendoza, G.; Andreu, V.; Irusta, S.; Sebastian, V.; Arruebo, M. Cleavable and thermo-responsive hybrid nanoparticles for on-demand drug delivery. J. Colloid. Interface Sci. 2019, 533, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Yu, H.; Xiao, C. pH-sensitive cationic guar gum/poly (acrylic acid) polyelectrolyte hydrogels: Swelling and in vitro drug release. Carbohydr. Polym. 2007, 69, 774–783. [Google Scholar] [CrossRef]
- Sawada, I.; Fachrul, R.; Ito, T.; Ohmukai, Y.; Maruyama, T.; Matsuyama, H. Development of a hydrophilic polymer membrane containing silver nanoparticles with both organic antifouling and antibacterial properties. J. Membr. Sci. 2012, 387, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Jamwala, H.S.; Ranotea, S.; Kumara, D.; Chauhan, G.S.; Bansal, M. Gelatin-based mesoporous hybrid materials for Hg2+ ions removal from aqueous solutions. Sep. Purif. Technol. 2020, 239, 116513. [Google Scholar] [CrossRef]
- Yang, H.; Lee, A.; Huang, C.; Chen, J. Characterization of poly(N-isopropylacrylamide)–nucleobase supramolecular complexes featuring bio-multiple hydrogen bonds. Soft Matter. 2014, 10, 8330–8340. [Google Scholar] [CrossRef]
- He, J.; Li, D.; Liu, Y.; Yao, B.; Lu, B.; Lian, Q. Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures. Polymer 2007, 48, 4578–4588. [Google Scholar]
- Chen, J.-K.; Wang, J.-H.; Fan, S.-K.; Chang, J.-Y. Reversible hydrophobic/hydrophilic adhesive of PS-b-PNIPAAm copolymer brush nanopillar arrays for mimicking the climbing aptitude of geckos. J. Phys. Chem. C 2012, 116, 6980–6992. [Google Scholar] [CrossRef]
- Huang, R.; Guilford, P.; Thiery, J.P. Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J. Cell Sci. 2012, 125, 4417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From Controlled Release to pH-responsive Drug Delivery. Drug Discov. Today 2002, 7, 569–579. [Google Scholar] [CrossRef]
- Nita, L.E.; Chiriac, A.P.; Rusu, A.G.; Ghilan, A.; Dumitriu, R.P.; Bercea, M.; Tudorachi, N. Stimuli Responsive Scaffolds Based on Carboxymethyl Starch and Poly(2-Dimethylaminoethyl Methacrylate) for Anti-Inflammatory Drug Delivery. Macromol. Biosci. 2020, 20, 1900412. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, J.; Cheng, C.; Ko, F. Fabrication of biomimetic device with PS-b-PNIPAAm copolymer pillars mimicking a gecko foot pad. Sens. Actuator B 2012, 174, 332–341. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, F.-C.; Huang, C.-F.; Chang, C.-J.; Lu, C.-H.; Chen, J.-K. Thermo-Tunable Pores and Antibiotic Gating Properties of Bovine Skin Gelatin Gels Prepared with Poly(n-isopropylacrylamide) Network. Polymers 2020, 12, 2156. https://doi.org/10.3390/polym12092156
Tsai F-C, Huang C-F, Chang C-J, Lu C-H, Chen J-K. Thermo-Tunable Pores and Antibiotic Gating Properties of Bovine Skin Gelatin Gels Prepared with Poly(n-isopropylacrylamide) Network. Polymers. 2020; 12(9):2156. https://doi.org/10.3390/polym12092156
Chicago/Turabian StyleTsai, Fang-Chang, Chih-Feng Huang, Chi-Jung Chang, Chien-Hsing Lu, and Jem-Kun Chen. 2020. "Thermo-Tunable Pores and Antibiotic Gating Properties of Bovine Skin Gelatin Gels Prepared with Poly(n-isopropylacrylamide) Network" Polymers 12, no. 9: 2156. https://doi.org/10.3390/polym12092156
APA StyleTsai, F. -C., Huang, C. -F., Chang, C. -J., Lu, C. -H., & Chen, J. -K. (2020). Thermo-Tunable Pores and Antibiotic Gating Properties of Bovine Skin Gelatin Gels Prepared with Poly(n-isopropylacrylamide) Network. Polymers, 12(9), 2156. https://doi.org/10.3390/polym12092156