Synthesis and Characterization of Ionic Graft Copolymers: Introduction and In Vitro Release of Antibacterial Drug by Anion Exchange
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Multifunctional Macroinitiators
2.2. Synthesis of Graft Copolymers Bearing Cl− (Example for G2)
2.3. Ionic Exchange for the Introduction of Pharmaceutical Anions (Example for G2)
2.4. Drug Release of Pharmaceutical Anions
2.5. Characterization
3. Results
3.1. Synthesis and Characterization of Grafted Copolymers with PIL Side Chains
3.2. Ionic Exchange with NaPAS and KCLV
3.3. Amphiphilic Properties and Wettability
3.4. Drug Release
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Chan, H.F.; Leong, K.W. Advanced Materials and Processing for Drug Delivery: The Past and the Future. Adv. Drug Deliv. Rev. 2013, 65, 104–120. [Google Scholar] [CrossRef] [Green Version]
- Vega-Vasquez, P.; Mosier, N.S.; Irudayaraj, J. Nanoscale Drug Delivery Systems: From Medicine to Agriculture. Frint. Bioeng. Biotechnol. 2020, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.; Khuller, G.K. Polymer based drug delivery systems for mycobacterial infections. Curr. Drug Deliv. 2004, 1, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Visser, J.G.; Van Staden, A.; Smith, C. Harnessing Macrophages for Controlled-Release Drug Delivery: Lessons From Microbes. Front. Pharmacol. 2019, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liao, S.; Guo, S.; Zheng, X.; Wang, B.; Duan, Z.; Zhang, H.; Gong, Q.; Luo, K. Multistimuli-Responsive PEGylated Polymeric Bioconjugate-Based Nano-aggregate for Cancer Therapy. Chem. Eng. J. 2020, 391, 123543. [Google Scholar] [CrossRef]
- Jain, N.; Gupta, B.; Thankur, N.; Jain, R.; Banweer, J.; Jain, D.K.; Jain, S. Phytosome: A Novel Drug Delivery System for Herbal Medicine. Int. J. Pharm. Sci. Drug Res. 2010, 2, 224–228. [Google Scholar]
- Devi, V.K.; Jain, N.; Valli, K.S. Importance of novel drug delivery systems in herbal medicines. Pharmacogn Rev. 2010, 4, 27–31. [Google Scholar]
- Li, D.-C.; Zhong, X.-K.; Zeng, Z.-P.; Jiang, J.-G.; Li, L.; Zhao, M.; Yang, X.-Q.; Chen, J.; Zhang, B.-S.; Zhao, Q.-Z.; et al. Application of targeted drug delivery system in Chinese medicine. J. Control Release 2009, 138, 103–112. [Google Scholar] [CrossRef]
- Bhowmik, D.; Gopinath, H.; Kumar, B.P.; Duraivel, S.; Kumar, K.P.S. Controlled Release Drug Delivery Systems. J. Pharm. Innov. 2012, 1, 24–32. [Google Scholar]
- Fleige, E.; Quadir, M.A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev. 2012, 64, 866–884. [Google Scholar] [CrossRef]
- Maksym-Bębenek, P.; Neugebauer, D. Self-assembling polyether-b-polymethacrylate graft copolymers loaded with indomethacin. Int. J. Polym. Mater. PO 2017, 66, 317–325. [Google Scholar] [CrossRef]
- Maksym-Bębenek, P.; Neugebauer, D. Synthesis of amphiphilic semigrafted pseudo-Pluronics for self-assemblies carrying indomethacin. RSC Adv. 2016, 6, 88444–88452. [Google Scholar] [CrossRef]
- Simone, E.A.; Dziubla, T.D.; Muzykantov, V. Polymeric carriers: Role of geometry in drug delivery. Expert Opin. Drug Deliv. 2018, 5, 1293–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalak, G.; Głuszek, K.; Piktel, E.; Deptuła, P.; Puszkarz, I.; Niemirowicz, K.; Bucki, R. Polymeric nanoparticles—A novel solution for delivery of antimibrobial agents. Stud. Med. 2016, 32, 56–62. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, T.; Jiang, C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm. Sin. B 2018, 8, 34–50. [Google Scholar] [CrossRef]
- Mokhtarzadeh, A.; Alibakhshi, A.; Yaghoobi, H.; Hashemi, M.; Hejazi, M.; Ramezani, M. Recent advances on biocompatible and biodegradable nanoparticles as gene carriers. Expert Opin. Biol. Ther. 2016, 16, 1–43. [Google Scholar] [CrossRef]
- Maksym-Bębenek, P.; Neugebauer, D. Study on Self-Assembled Well-Defined PEG Graft Copolymers as Efficient Drug-Loaded Nanoparticles for Anti-Inflammatory Therapy. Macromol. Biosci. 2015, 15, 1616–1624. [Google Scholar] [CrossRef]
- Maksym-Bębenek, P.; Biela, T.; Neugebauer, D. Synthesis and investigation of monomodal hydroxy-functionalized PEG methacrylate based copolymers with high polymerization degrees. Modification by “grafting from”. React. Funct. Polym. 2014, 82, 33–40. [Google Scholar] [CrossRef]
- Ayres, N. Polymer brushes: Applications in biomaterials and nanotechnology. Polym. Chem. 2010, 1, 769–777. [Google Scholar] [CrossRef]
- Bury, K.; Neugebauer, D.; Biela, T. Methacrylate copolymers with hydroxyl terminated caprolactone chains via ATRP. A route to grafted copolymers. React. Funct. Polym. 2011, 71, 616–624. [Google Scholar] [CrossRef]
- Maksym-Bębenek, P.; Biela, T.; Neugebauer, D. Water soluble well-defined acidic graft copolymers based on a poly(propylene glycol) macromonomer. RSC Adv. 2015, 5, 3627–3635. [Google Scholar] [CrossRef]
- Cheng, G.; Boker, A.; Zhang, M.; Krausch, G.; Muller, A. Amphiphilic Cylindrical Core-Shell Brushes via a “Grafting From” Process Using ATRP. Macromolecules 2001, 34, 6883–6888. [Google Scholar] [CrossRef]
- Janata, M.; Masar, B.; Toman, L.; Vlcek, P.; Policka, P.; Brus, J.; Holler, P. Multifunctional ATRP macroinitiators for the synthesis of graft copolymers. React. Funct. Polym. 2001, 50, 67–75. [Google Scholar] [CrossRef]
- Bielas, R.; Mielańczyk, A.; Skonieczna, M.; Mielańczyk, Ł.; Neugebauer, D. Choline supported poly(ionic liquid) graft copolymers as novel elivery systems of anionic pharmaceuticals for anti-flammatory and anti-coagulant therapy. Sci. Rep. 2019, 9, 14410. [Google Scholar] [CrossRef]
- Neugebauer, D.; Mielańczyk, A.; Bielas, R.; Odrobińska, J.; Kupczak, M.; Niesyto, K. Ionic Polymethacrylate Based Delivery Systems: Effect of Carrier Topology and Drug Loading. Pharmaceutics 2019, 11, 337. [Google Scholar] [CrossRef] [Green Version]
- Nie, J.; Xiao, S.; Tan, R.; Wang, T.; Duan, X. New Insights on the Fast Response of Poly(Ionic Liquid)s to Humidity: The Effect of Free-Ion Concentration. Nanomaterials 2019, 9, 749. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Antonietti, M. Poly(ionic liquid)s: Polymers expanding classical property profiles. Polymer 2011, 52, 1469–1482. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhuang, Q.; Zhang, M.; Wang, H.; Gao, Z.; Sun, J.; Yuan, J. Poly(ionic liquid) composites. Chem. Soc. Rev. 2020, 49, 1726–1755. [Google Scholar] [CrossRef] [Green Version]
- Biswas, Y.; Banerjee, P.; Mandal, T.K. From Polymerizable Ionic Liquids to Poly(ionic liquid)s: Structure Dependent Thermal, Crystalline, Conductivity, and Solution Thermoresponsive Behaviors. Macromolecules 2019, 52, 945–958. [Google Scholar] [CrossRef]
- Tan, Z.Q.; Liu, J.F.; Pang, L. Advances in analytical chemistry using the unique properties of ionic liquids. TrAC Trends. Anal. Chem. 2012, 39, 218–227. [Google Scholar] [CrossRef]
- Yuan, J.; Mecerreyes, D.; Antonietti, M. Poly(ionic liquid)s: An update. Prog. Polym. Sci. 2013, 38, 1009–1036. [Google Scholar] [CrossRef]
- Zhao, D.; Liao, Y.; Zhang, Z. Toxicity of Ionic Liquids. Clean 2007, 35, 42–48. [Google Scholar] [CrossRef]
- Frade, R. Ionic Liquids in Green Chemistry—Prediction of Ionic Liquids Toxicity Using Different Models. In Green Chemistry for Environmental Remediation; Singh, V., Sanghi, R., Eds.; Wiley: Lisbon, Portugal, 2012; pp. 343–355. [Google Scholar]
- Isik, M.; Gracia, R.; Kollnus, L.; Tome, L.; Marrucho, I.; Mecerreyes, D. Cholinum-Based Poly(ionic iquid)s: Synthesis, Characterisation, and Application as Biocompatybile Ion Gels and Cellulose Coatings. ACS Macro. Lett. 2013, 2, 975–979. [Google Scholar] [CrossRef]
- Petkovic, M.; Ferguson, J.L.; Gunaratne, H.Q.N.; Ferreira, R.; Leitão, M.C.; Seddon, K.R.; Rebelo, L.P.N.; Pereira, C.S. Novel biocompatybile cholinum-based ionic liquids-toxicity and biodegradability. Green Chem. 2010, 12, 643–649. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; Silva, F.; Gonçalves, A.M.M.; Pereira, J.L.; Gonçalves, F.; Coutinho, J.A.P. Ecotoxicity analysis of cholinum-based ionic liquids to Vibrio fischeri marine bacteria. Ecotoxicol. Environ. Saf. 2014, 102, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Shahriari, S.; Tomé, L.C.; Araújo, J.M.M.; Rebelo, L.P.N.; Coutinho, J.A.P.; Marrucho, I.M.; Freire, M.G. Aqueous biphasic systems: A begin route using cholinum-based ionic liquids. RCS Adv. 2013, 3, 1835–1843. [Google Scholar] [CrossRef]
- Isik, M.; Gracia, R.; Kollnus, L.; Tome, L.; Marrucho, I.; Mecerreyes, D. Cholinium Lactate Methacrylate: Ionic Liquid Monomer for Cellulose Composites and Biocompatible Ion Gels. Macromol. Symp. 2014, 342, 21–24. [Google Scholar] [CrossRef]
- Lee, H.C.; Fellenz-Maloney, M.P.; Liscovitch, M.; Blusztajn, J.K. Phospholipase D-catalyzed hydrolysis of phosphatidylcholine provides the choline precursor for acetylcholine synthesis in a human neuronal cell line. Proc. Natl. Acad. Sci. USA 1993, 90, 10086–10090. [Google Scholar] [CrossRef] [Green Version]
- Bielas, R.; Siewniak, A.; Skonieczna, M.; Adamiec, M.; Mielańczyk, Ł.; Neugebauer, D. Choline based polymethacrylate matrix with pharmaceutical cations as co-delivery system for antibacterial and anti-inflammatory combined therapy. J. Mol. Liq. 2019, 285, 114–122. [Google Scholar] [CrossRef]
- Bielas, R.; Mielańczyk, A.; Siewniak, A.; Neugebauer, D. Trimethylammonium-based polymethacrylate ionic liquids with tunable hydrophilicity and charge distribution as carriers of salicylate anions. ACS Sustain. Chem. Eng. 2016, 4, 4181–4191. [Google Scholar] [CrossRef]
- Bielas, R.; Łukowiec, D.; Neugebauer, D. Drug delivery via anion exchange of salicylate decorating poly(meth)acrylates based on pharmaceutical ionic liquid. New J. Chem. 2017, 21, 12801–12807. [Google Scholar] [CrossRef]
- Hosseinzadeh, F.; Mahkam, M.; Galehassadi, M. Synthesis and characterization of ionic liquid functionalized polymers for drug delivery of an anti-inflammatory drug. Des. Monomers Polym. 2012, 15, 279–388. [Google Scholar] [CrossRef]
- Gorbunova, M.; Lemkina, L.; Borisova, I. New guanidine-containing polyelectrolytes as advanced antibacterial materials. Eur. Polym. J. 2018, 105, 426–433. [Google Scholar] [CrossRef]
No. | HEMA/MMA | DPHEMA a (DPBIEM) | DPn a | Mna × 10−3 (g/mol) | Mnb × 10−3 (g/mol) | Ð b |
---|---|---|---|---|---|---|
I | 25/75 | 48 | 186 | 20.3 | 23.4 | 1.47 |
Ia | (48) | 27.4 | 22.6 | 1.37 | ||
II | 50/50 | 133 | 292 | 33.4 | 26.5 | 1.71 |
IIa | (133) | 53.2 | 33.4 | 1.63 |
No. | MI | Time (h) | nsc a | DG (mol.%) | XTMAMA (%) | DPsc a | FTMAMA a (mol.%) | Mna × 10−3 (g/mol) | Mn b × 10−3 (g/mol) | Ð b |
---|---|---|---|---|---|---|---|---|---|---|
G1 | Ia | 0.5 | 48 | 26 | 9 | 16 | 13 | 114.7 | 12.5 | 1.68 |
G2 | 1 | 22 | 24 | 21 | 168.6 | 17.5 | 1.9 | |||
G3 | 1 | 26 | 31 | 42 | 243.6 | 54.7 | 1.31 | |||
G4 | 2 | 30 | 35 | 43 | 273.1 | 36.3 | 1.15 | |||
G5 | IIa | 1 | 133 | 46 | 30 | 29 | 28 | 553.9 | 194.0 | 1.24 |
G6 | 2 | 48 | 65 | 18 | 1090.5 | 391.1 | 1.11 | |||
G7 | 1 | 22 | 28 | 39 | 583.5 | - | - | |||
G8 | 2 | 44 | 48 | 46 | 1007.2 | - | - |
No. | Hydrophilic Fraction a (mol.%) | Drug Content (DC) (%) | Released Drug after 48 h (%) | Concentration of Released Drug (μg/mL) | |||
---|---|---|---|---|---|---|---|
PAS− | CLV− | PAS− | CLV− | PAS− | CLV− | ||
G1 | 10 | 31.2 | 92.0 | 18.2 | 26.1 | 3.1 | 13.3 |
G2 | 18 | 63.9 | 78.6 | 24.5 | 25.4 | 8.8 | 11.1 |
G3 | 37 | 49.9 | 98.1 | 30.6 | 34.5 | 8.5 | 18.8 |
G4 | 39 | 36.2 | 100 | 42.4 | 46.8 | 7.7 | 26.7 |
G5 | 26 | 40.2 | 85.7 | 30.7 | 39.1 | 6.2 | 18.7 |
G6 | 18 | 37.0 | 66.3 | 40.0 | 61.2 | 7.4 | 22.5 |
G7 | 36 | 36.5 | 88.7 | 36.5 | 73.0 | 6.7 | 31.1 |
G8 | 44 | 39.7 | 68.5 | 28.3 | 61.8 | 5.6 | 30.4 |
No. | CMC a (mg/mL) | WCA b (°) | ||||
---|---|---|---|---|---|---|
Cl− | PAS− | CLV− | Cl− | PAS− | CLV− | |
G1 | 0.010 | 0.025 | 0.021 | 68.4 | 66.4 | 64.1 |
G2 | 0.014 | 0.032 | 0.031 | 61.7 | 59.0 | 52.7 |
G3 | 0.011 | 0.019 | 0.021 | 60.0 | 46.3 | 46.1 |
G4 | 0.013 | 0.028 | 0.030 | 56.3 | 45.7 | 38.6 |
G5 | 0.005 | 0.010 | 0.012 | 53.7 | 43.5 | 36.4 |
G6 | 0.011 | 0.036 | 0.031 | 44.3 | 30.3 | 29.1 |
G7 | 0.020 | 0.044 | 0.036 | 48.9 | 38.6 | 35.5 |
G8 | 0.026 | 0.051 | 0.040 | 46.8 | 36.5 | 32.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niesyto, K.; Neugebauer, D. Synthesis and Characterization of Ionic Graft Copolymers: Introduction and In Vitro Release of Antibacterial Drug by Anion Exchange. Polymers 2020, 12, 2159. https://doi.org/10.3390/polym12092159
Niesyto K, Neugebauer D. Synthesis and Characterization of Ionic Graft Copolymers: Introduction and In Vitro Release of Antibacterial Drug by Anion Exchange. Polymers. 2020; 12(9):2159. https://doi.org/10.3390/polym12092159
Chicago/Turabian StyleNiesyto, Katarzyna, and Dorota Neugebauer. 2020. "Synthesis and Characterization of Ionic Graft Copolymers: Introduction and In Vitro Release of Antibacterial Drug by Anion Exchange" Polymers 12, no. 9: 2159. https://doi.org/10.3390/polym12092159
APA StyleNiesyto, K., & Neugebauer, D. (2020). Synthesis and Characterization of Ionic Graft Copolymers: Introduction and In Vitro Release of Antibacterial Drug by Anion Exchange. Polymers, 12(9), 2159. https://doi.org/10.3390/polym12092159