Synergistic and Regulatable Bioremediation Capsules Fabrication Based on Vapor-Phased Encapsulation of Bacillus Bacteria and its Regulator by Poly-p-Xylylene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain Isolation
2.2. Encapsulation Process
2.3. Enzyme Activity Assays
2.4. Characterizations
3. Results and Discussion
3.1. The Fabrication of Regulatable Bioremediation Capsules
3.2. Viability and Cellulase Activities of Encapsulated B. CMC1
3.3. Regulation of the Fabricated Capsules by CMC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abatenh, E.; Gizaw, B.; Tsegaye, Z.; Wassie, M. The role of microorganisms in bioremediation. Open J. Environ. Biol. 2017, 1, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Giovanella, P.; Vieira, G.A.L.; Otero, I.V.R.; Pellizzer, E.P.; Fontes, B.J.; Sette, L.D. Metal and organic pollutants bioremediation by extremophile microorganisms. J. Hazard. Mater. 2020, 382, 121024. [Google Scholar] [CrossRef] [PubMed]
- Ojuederie, O.B.; Babalola, O.O. Microbial and plant-assisted bioremediation of heavy metal polluted environments. Int. J. Environ. Res. Pub. Health 2017, 14, 1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovley, D.R. Cleaning up with genomics: Applying molecular biology to bioremediation. Nat. Rev. 2003, 1, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Viesser, J.A.; Sugai-Guerios, M.H.; Malucelli, L.C.; Pincerati, M.R.; Karp, S.G.; Maranho, L.T. Petroleum-tolerant rhizospheric bacteria: Isolation, characterization and bioremediation potential. Sci. Rep. 2020, 10, 2060. [Google Scholar] [CrossRef]
- Singh, J.S.; Abhilash, P.C.; Singh, H.B.; Singh, R.P.; Singh, D.P. Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 2011, 480, 1–9. [Google Scholar] [CrossRef]
- Pieper, D.H.; Reineke, W. Engineering bacteria for bioremediation. Curr. Option Biotechnol. 2000, 11, 262–270. [Google Scholar] [CrossRef]
- Chen, W.; Brühlmann, F.; Richins, R.D.; Mulchandani, A. Engineering of improved microbes and enzymes for bioremediation. Curr. Option Biotechnol. 1999, 10, 137–141. [Google Scholar] [CrossRef]
- Martín, M.J.; Lara-Villoslada, F.; Ruiz, M.A.; Morales, M.E. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innov. Food Sci. Emerg. Technol. 2015, 27, 15–25. [Google Scholar] [CrossRef]
- Huq, T.; Khan, A.; Khan, R.A.; Riedl, B.; Lacroix, M. Encapsulation of probiotic bacteria in biopolymeric system. Crit. Rev. Food Sci. Nutr. 2013, 53, 909–916. [Google Scholar] [CrossRef] [Green Version]
- Keskin, N.O.S.; Celebioglu, A.; Sarioglu, O.F.; Uyar, T.; Tekinay, T. Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Coll. Surf. B Biointerfaces 2018, 161, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-García, R.; Gohil, N.; Singh, V. Phytomanagement of Polluted Sites; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 517–568. [Google Scholar]
- Rathore, S.; Desai, P.M.; Liew, C.V.; Chan, L.W.; Heng, P.W.S. Microencapsulation of microbial cells. J. Food Eng. 2013, 116, 369–381. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Huang, C.W.; Liu, H.Y.; Huang, M.C.; Sun, T.P.; Chen, W.C.; Wu, C.Y.; Ding, S.T.; Chen, H.Y. Enhanced bone morphogenic property of parylene-C. Biomater. Sci. 2016, 4, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-R.; Hsu, Y.-T.; Wu, C.-Y.; Lin, T.-H.; Yang, Y.-Z.; Chen, H.-Y. Fabrication of asymmetrical and gradient hierarchy structures of poly-p-xylylenes on multiscale regimes based on a vapor-phase sublimation and deposition process. Chem. Mater. 2020, 32, 1120–1130. [Google Scholar] [CrossRef]
- Tung, H.-Y.; Sun, T.-P.; Sun, H.-Y.; Guan, Z.-Y.; Hu, S.-K.; Chao, L.; Chen, H.-Y. Construction and control of 3D porous structure based on vapor deposition on sublimation solids. Appl. Mater. Today 2017, 7, 77–81. [Google Scholar] [CrossRef]
- Tung, H.-Y.; Guan, Z.-Y.; Liu, T.-Y.; Chen, H.-Y. Vapor sublimation and deposition to build porous particles and composites. Nat. Commun. 2018, 9, 2564. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Lahann, J. Designable biointerfaces using vapor-based reactive polymers. Langmuir 2011, 27, 34–48. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Lin, T.-J.; Tsai, M.-Y.; Su, C.-T.; Yuan, R.-H.; Hsieh, C.-C.; Yang, Y.-J.; Hsu, C.-C.; Hsiao, H.-M.; Hsu, Y.-C. Vapor-based tri-functional coatings. Chem. Commun. 2013, 49, 4531–4533. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Huang, C.-W.; Guan, Z.-Y.; Wu, J.-T.; Yeh, S.-Y.; Su, C.-T.; Chang, C.-H.; Ding, S.-T.; Chen, H.-Y. Vapor-based coatings for antibacterial and osteogenic functionalization and the immunological compatibility. Mater. Sci. Eng. C 2016, 69, 283–291. [Google Scholar] [CrossRef]
- Chang, C.-H.; Yeh, S.-Y.; Lee, B.-H.; Hsu, C.-W.; Chen, Y.-C.; Chen, C.-J.; Lin, T.-J.; Hung-Chih Chen, M.; Huang, C.-T.; Chen, H.-Y. Compatibility balanced antibacterial modification based on vapor-deposited parylene coatings for biomaterials. J. Mater. Chem. B 2014, 2, 8496–8503. [Google Scholar] [CrossRef]
- Chen, S.-T.; Wu, C.-Y.; Chen, H.-Y. Enhanced growth activities of stem cell spheroids based on a durable and chemically defined surface modification coating. ACS Appl. Mater. Interfaces 2018, 10, 31882–31891. [Google Scholar] [CrossRef] [PubMed]
- Deka, D.; Bhargavi, P.; Sharma, A.; Goyal, D.; Jawed, M.; Goyal, A. Enhancement of cellulase activity from a new strain of Bacillus subtilis by medium optimization and analysis with various cellulosic substrates. Enzyme Res. 2011, 2011, 151656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurzbaum, E.; Raizner, Y.; Kuc, M.E.; Kulikov, A.; Hakimi, B.; Kruh, L.I.; Menashe, O. Phenol biodegradation by bacterial cultures encapsulated in 3D microfiltration-membrane capsules. Environ. Technol. 2020, 41, 2875–2883. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Pang, B.; Xi, J.; Hu, H.-Y. Screening and characterization of mixotrophic sulfide oxidizing bacteria for odorous surface water bioremediation. Biores. Technol. 2019, 290, 121721. [Google Scholar] [CrossRef] [PubMed]
- Kalaimurugan, D.; Balamuralikrishnan, B.; Durairaj, K.; Vasudhevan, P.; Shivakumar, M.; Kaul, T.; Chang, S.; Ravindran, B.; Venkatesan, S. Isolation and characterization of heavy-metal-resistant bacteria and their applications in environmental bioremediation. Int. J. Environ. Sci. Technol. 2020, 17, 1455–1462. [Google Scholar] [CrossRef]
0% CMC | Time (h) | Diameter of the Functioning Zone (cm) | 0.25% CMC | Time (h) | Diameter of the Functioning Zone (cm) | ||||
Exp. 1 | Exp. 2 | Exp. 3 | Exp. 1 | Exp. 2 | Exp. 3 | ||||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
30 | 1.2 | 1.1 | 1.3 | 30 | 1.6 | 1.7 | 1.7 | ||
50 | 1.9 | 1.8 | 2.3 | 50 | 2.6 | 2.2 | 2.5 | ||
110 | 3.9 | 4.1 | 4 | 110 | 4 | 4.1 | 4.3 | ||
140 | 4.3 | 4.5 | 4.4 | 140 | 5 | 4.8 | 4.7 | ||
1.5% CMC | Time (h) | Diameter of the Functioning Zone (cm) | 2.5% CMC | Time (h) | Diameter of the Functioning Zone (cm) | ||||
Exp. 1 | Exp. 2 | Exp. 3 | Exp. 1 | Exp. 2 | Exp. 3 | ||||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
30 | 2 | 2.1 | 1.9 | 30 | 2 | 2.2 | 2.1 | ||
50 | 2.5 | 2.4 | 2.6 | 50 | 2.7 | 2.9 | 2.6 | ||
110 | 5.1 | 4.9 | 5.2 | 110 | 5.1 | 5.3 | 5 | ||
140 | 5.6 | 5.4 | 5.7 | 140 | 5.9 | 6.2 | 5.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-C.; Huang, W.-S.; Hu, S.-M.; Huang, C.-W.; Chiu, C.-H.; Chen, H.-Y. Synergistic and Regulatable Bioremediation Capsules Fabrication Based on Vapor-Phased Encapsulation of Bacillus Bacteria and its Regulator by Poly-p-Xylylene. Polymers 2021, 13, 41. https://doi.org/10.3390/polym13010041
Yang Y-C, Huang W-S, Hu S-M, Huang C-W, Chiu C-H, Chen H-Y. Synergistic and Regulatable Bioremediation Capsules Fabrication Based on Vapor-Phased Encapsulation of Bacillus Bacteria and its Regulator by Poly-p-Xylylene. Polymers. 2021; 13(1):41. https://doi.org/10.3390/polym13010041
Chicago/Turabian StyleYang, Yen-Ching, Wei-Shen Huang, Shu-Man Hu, Chao-Wei Huang, Chih-Hao Chiu, and Hsien-Yeh Chen. 2021. "Synergistic and Regulatable Bioremediation Capsules Fabrication Based on Vapor-Phased Encapsulation of Bacillus Bacteria and its Regulator by Poly-p-Xylylene" Polymers 13, no. 1: 41. https://doi.org/10.3390/polym13010041
APA StyleYang, Y. -C., Huang, W. -S., Hu, S. -M., Huang, C. -W., Chiu, C. -H., & Chen, H. -Y. (2021). Synergistic and Regulatable Bioremediation Capsules Fabrication Based on Vapor-Phased Encapsulation of Bacillus Bacteria and its Regulator by Poly-p-Xylylene. Polymers, 13(1), 41. https://doi.org/10.3390/polym13010041