Synthesis of Dense 1,2,3-Triazole Polymers Soluble in Common Organic Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements
2.2. Materials
2.3. Synthesis of t-Butyl 4-Azido-5-Hexynoate (tBuAH)
2.3.1. Synthesis of t-Butyl 6-(t-Butyldimethylsilyl)-4-Oxo-5-Hexynoate (4)
2.3.2. Synthesis of t-Butyl 6-(t-Butyldimethylsilyl)-4-Hydroxy-5-Hexynoate (5)
2.3.3. Synthesis of t-Butyl 4-Azido-6-(t-Butyldimethylsilyl)-5-Hexynoate (6)
2.3.4. Synthesis of t-Butyl 4-Azido-5-Hexynoate (tBuAH)
2.4. Polymerization of tBuAH
2.4.1. Copper(I)-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) Polymerization of tBuAH
2.4.2. Huisgen Cycloaddition (HC) Polymerization of tBuAH
2.5. Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) Calculations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References and Note
- Huisgen, R.; Grashey, R.; Aufderhaar, E.; Kunz, R. 1,3-Dipolar cycloadditions. XIII. Additions of nitrilimines to oximes, azines, and other CN double bonds. Chem. Ber. 1965, 98, 642–649. [Google Scholar] [CrossRef]
- Huisgen, R. The concerted nature of 1,3-dipolar cycloadditions and the question of diradical intermediates. J. Org. Chem. 1976, 41, 403–419. [Google Scholar] [CrossRef]
- Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057–3064. [Google Scholar] [CrossRef]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [Google Scholar] [CrossRef]
- Fazio, F.; Bryan, M.C.; Blixt, O.; Paulson, J.C.; Wong, C.-H. Synthesis of sugar arrays in microtiter plate. J. Am. Chem. Soc. 2002, 124, 14397–14402. [Google Scholar] [CrossRef]
- Worrell, B.T.; Malik, J.A.; Fokin, V.V. Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions. Science 2013, 340, 457–460. [Google Scholar] [CrossRef] [Green Version]
- Abboud, J.-L.M.; Foces-Foces, C.; Notario, R.; Trifonov, R.E.; Volovodenko, A.P.; Ostrovskii, V.A.; Alkorta, I.; Elguero, J. Basicity of N-H- and N-methyl-1,2,3-triazoles in the gas phase, in solution, and in the solid state—An experimental and theoretical study. Eur. J. Org. Chem. 2001, 2001, 3013–3024. [Google Scholar] [CrossRef]
- Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003, 8, 1128–1137. [Google Scholar] [CrossRef]
- Dehaen, W.; Bakulev, V.A. Chemistry of 1,2,3-Triazoles; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Komeda, S.; Lutz, M.; Spek, A.L.; Yamanaka, Y.; Sato, T.; Chikuma, M.; Reedijk, J. A novel isomerization on interaction of antitumor-active azole-bridged dinuclear platinum(II) complexes with 9-ethylguanine. Platinum(II) atom migration from N2 to N3 on 1,2,3-triazole. J. Am. Chem. Soc. 2002, 124, 4738–4746. [Google Scholar] [CrossRef] [Green Version]
- Meudtner, R.M.; Ostermeier, M.; Goddard, R.; Limberg, C.; Hecht, S. Multifunctional “clickates” as versatile extended heteroaromatic building blocks: Efficient synthesis via click chemistry, conformational preferences, and metal coordination. Chem. Eur. J. 2007, 13, 9834–9840. [Google Scholar] [CrossRef]
- Li, Y.; Huffman, J.C.; Flood, A.H. Can terdentate 2,6-bis(1,2,3-triazol-4-yl)pyridines form stable coordination compounds? Chem. Commun. 2007, 2692–2694. [Google Scholar] [CrossRef]
- Struthers, H.; Mindt, T.L.; Schibli, R. Metal chelating systems synthesized using the copper(I) catalyzed azide-alkyne cycloaddition. Dalton Trans. 2010, 39, 675–696. [Google Scholar] [CrossRef]
- Crowley, J.D.; Bandeen, P.H. A multicomponent cuaac “click” approach to a library of hybrid polydentate 2-pyridyl-1,2,3-triazole ligands: New building blocks for the generation of metallosupramolecular architectures. Dalton Trans. 2010, 39, 612–623. [Google Scholar] [CrossRef]
- Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. [Google Scholar] [CrossRef]
- Aromí, G.; Barrios, L.A.; Roubeau, O.; Gamez, P. Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coord. Chem. Rev. 2011, 255, 485–546. [Google Scholar] [CrossRef]
- Hua, Y.; Flood, A.H. Click chemistry generates privileged CH hydrogen-bonding triazoles: The latest addition to anion supramolecular chemistry. Chem. Soc. Rev. 2010, 39, 1262–1271. [Google Scholar] [CrossRef]
- Li, Y.; Flood, A.H. Pure C–H hydrogen bonding to chloride ions: A preorganized and rigid macrocyclic receptor. Angew. Chem. Int. Ed. 2008, 47, 2649–2652. [Google Scholar] [CrossRef]
- Li, Y.; Flood, A.H. Strong, size-selective, and electronically tunable C–H···halide binding with steric control over aggregation from synthetically modular, shape-persistent [34]triazolophanes. J. Am. Chem. Soc. 2008, 130, 12111–12122. [Google Scholar] [CrossRef]
- Li, Y.; Pink, M.; Karty, J.A.; Flood, A.H. Dipole-promoted and size-dependent cooperativity between pyridyl-containing triazolophanes and halides leads to persistent sandwich complexes with iodide. J. Am. Chem. Soc. 2008, 130, 17293–17295. [Google Scholar] [CrossRef]
- Bandyopadhyay, I.; Raghavachari, K.; Flood, A.H. Strong CH···halide hydrogen bonds from 1,2,3-triazoles quantified using pre-organized and shape-persistent triazolophanes. ChemPhysChem 2009, 10, 2535–2540. [Google Scholar] [CrossRef]
- Juwarker, H.; Lenhardt, J.M.; Pham, D.M.; Craig, S.L. 1,2,3-triazole CH···Cl– contacts guide anion binding and concomitant folding in 1,4-diaryl triazole oligomers. Angew. Chem. Int. Ed. 2008, 47, 3740–3743. [Google Scholar] [CrossRef]
- Juwarker, H.; Lenhardt, J.M.; Castillo, J.C.; Zhao, E.; Krishnamurthy, S.; Jamiolkowski, R.M.; Kim, K.-H.; Craig, S.L. Anion binding of short, flexible aryl triazole oligomers. J. Org. Chem. 2009, 74, 8924–8934. [Google Scholar] [CrossRef]
- Qin, A.; Lam, J.W.Y.; Tang, B.Z. Click polymerization: Progresses, challenges, and opportunities. Macromolecules 2010, 43, 8693–8702. [Google Scholar] [CrossRef]
- Qin, A.; Lam, J.W.Y.; Tang, B.Z. Click polymerization. Chem. Soc. Rev. 2010, 39, 2522–2544. [Google Scholar] [CrossRef] [Green Version]
- Qin, A.; Tang, B.Z. Click Polymerization; Royal Society of Chemistry: London, UK, 2018; p. 248. [Google Scholar]
- Angelo, N.G.; Arora, P.S. Nonpeptidic foldamers from amino acids: Synthesis and characterization of 1,3-substituted triazole oligomers. J. Am. Chem. Soc. 2005, 127, 17134–17135. [Google Scholar] [CrossRef]
- Angelo, N.G.; Arora, P.S. Solution- and solid-phase synthesis of triazole oligomers that display protein-like functionality. J. Org. Chem. 2007, 72, 7963–7967. [Google Scholar] [CrossRef]
- Srinivasachari, S.; Liu, Y.; Zhang, G.; Prevette, L.; Reineke, T.M. Trehalose click polymers inhibit nanoparticle aggregation and promote pdna delivery in serum. J. Am. Chem. Soc. 2006, 128, 8176–8184. [Google Scholar] [CrossRef]
- Tsarevsky, N.V.; Sumerlin, B.S.; Matyjaszewski, K. Step-growth “click” coupling of telechelic polymers prepared by atom transfer radical polymerization. Macromolecules 2005, 38, 3558–3561. [Google Scholar] [CrossRef]
- Johnson, J.A.; Finn, M.G.; Koberstein, J.T.; Turro, N.J. Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper-catalyzed azide-alkyne cycloaddition “click” chemistry. Macromol. Rapid Commun. 2008, 29, 1052–1072. [Google Scholar] [CrossRef]
- Harada, T.; Kamon, Y.; Hashidzume, A. Copper(I)-catalyzed azide–alkyne cycloaddition polymerization of N-butyl-N-ethynyl-4-azidobenzenesulfonamide. Mater. Today Commun. 2018, 17, 229–237. [Google Scholar] [CrossRef]
- Hashidzume, A.; Nakamura, T.; Sato, T. Copper-catalyzed azide-alkyne cycloaddition oligomerization of 3-azido-1-propyne derivatives. Polymer 2013, 54, 3448–3451. [Google Scholar] [CrossRef]
- Nakano, S.; Hashidzume, A.; Sato, T. Quarternization of 3-azido-1-propyne oligomers obtained by copper(I)-catalyzed azide–alkyne cycloaddition polymerization. Beilstein J. Org. Chem. 2015, 11, 1037–1042. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Mori, A.; Hashidzume, A. Emission properties of diblock copolymers composed of poly(ethylene glycol) and dense 1,2,3-triazole blocks. Polymers 2019, 11, 1086. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Hashidzume, A. A new associative diblock copolymer of poly(ethylene glycol) and dense 1,2,3-triazole blocks: Self-association behavior and thermoresponsiveness in water. Macromol. Chem. Phys. 2019, 220, 1900317. [Google Scholar] [CrossRef]
- Falciani, C.; Brunetti, J.; Pagliuca, C.; Menichetti, S.; Vitellozzi, L.; Lelli, B.; Pini, A.; Bracci, L. Design and in vitro evaluation of branched peptide conjugates: Turning nonspecific cytotoxic drugs into tumor-selective agents. ChemMedChem 2010, 5, 567–574. [Google Scholar] [CrossRef]
- Hashimoto, T.; Fukumoto, K.; Abe, N.; Sakata, K.; Maruoka, K. Development of 5-silylethynyl-1,3-dioxolan-4-one as a new prochiral template for asymmetric phase-transfer catalysis. Chem. Commun. 2010, 46, 7593–7595. [Google Scholar] [CrossRef]
- Comstock, L.R.; Rajski, S.R. Expeditious synthesis of aziridine-based cofactor mimics. Tetrahedron 2002, 58, 6019–6026. [Google Scholar] [CrossRef]
- Witulski, B.; Stengel, T. N-Functionalized 1-alkynylamides: New building blocks for transition metal mediated inter- and intramolecular [2+2+1] cycloadditions. Angew. Chem. Int. Ed. 1998, 37, 489–492. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision b.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- It is noteworthy that the poly(tBuAH) sample of higher f1,4 contains more 1,5/1,5-diad units presumably because of steric hindrance during HC polymerization.
Run | Solvent | Cu(I) Catalyst | Yield/% | Mw 2/103 | Mw/Mn 2 | Mw 3/103 | Mw/Mn 3 | f1,4 4 |
---|---|---|---|---|---|---|---|---|
1 | DMF | CuBr 5 | 83 | 9.1 | 1.4 | - | - | 1.0 |
2 | DMF | CuI 5 | 26 | 8.3 | 1.6 | - | - | 1.0 |
3 | DMF | CuSO4•5H2O/NaAsc | 53 | 9.3 | 1.4 | - | - | 1.0 |
4 | DMSO | CuSO4•5H2O/NaAsc | 44 | 7.7 | 1.5 | 16 | 1.3 | 1.0 |
5 | DMF | - | 96 | 12 | 1.5 | 26 | 1.3 | 0.38 |
6 | THF | - | 94 | 46 | 2.2 | 80 | 1.8 | 0.46 |
7 | toluene | - | 89 | 45 | 2.4 | 78 | 1.6 | 0.49 |
f1,4 | Tm 1/°C | Heat of Fusion 1/J g−1 | Tg 2/°C | Cp at Tg 2/J deg−1 g−1 |
---|---|---|---|---|
1.0 | 89 | 21 | 30 | 1.1 |
0.49 | 79 | 4.9 | 24 | 0.71 |
0.46 | 74 | 6.5 | 22 | 0.51 |
0.38 | 64 | 5.6 | 28 114 | 0.98 0.57 |
Solvent | Solubility 1 | |
---|---|---|
CuAAC | HC 2 | |
DMSO | ++ | ++ |
DMF | ++ | ++ |
THF | ++ | ++ |
chloroform | ++ | ++ |
dichloromethane | ++ | ++ |
acetone | ++ | ++ |
ethyl acetate | + | + |
acetonitrile | + | + |
methanol | – | – |
water | – | – |
toluene | – | – |
diethyl ether | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamasaki, S.; Kamon, Y.; Xu, L.; Hashidzume, A. Synthesis of Dense 1,2,3-Triazole Polymers Soluble in Common Organic Solvents. Polymers 2021, 13, 1627. https://doi.org/10.3390/polym13101627
Yamasaki S, Kamon Y, Xu L, Hashidzume A. Synthesis of Dense 1,2,3-Triazole Polymers Soluble in Common Organic Solvents. Polymers. 2021; 13(10):1627. https://doi.org/10.3390/polym13101627
Chicago/Turabian StyleYamasaki, Shota, Yuri Kamon, Linlin Xu, and Akihito Hashidzume. 2021. "Synthesis of Dense 1,2,3-Triazole Polymers Soluble in Common Organic Solvents" Polymers 13, no. 10: 1627. https://doi.org/10.3390/polym13101627
APA StyleYamasaki, S., Kamon, Y., Xu, L., & Hashidzume, A. (2021). Synthesis of Dense 1,2,3-Triazole Polymers Soluble in Common Organic Solvents. Polymers, 13(10), 1627. https://doi.org/10.3390/polym13101627