Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphological Characteristics of PCNF, LCNF, and TOLCNF
3.2. Viscosity of the Wet-Spinning Suspension
3.3. Morphological Characteristics of Wet-Spun Filaments
3.4. Tensile Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Ma, X.; Li, R.; Zhao, X.; Ji, Q.; Xing, Y.; Sunarso, J.; Xia, Y. Biopolymer composite fibres composed of calcium alginate reinforced with nanocrystalline cellulose. Compos. Part A Appl. Sci. Manuf. 2017, 96, 155–163. [Google Scholar] [CrossRef]
- Xu, G.K.; Liu, L.; Yao, J.M. Fabrication and Characterization of Alginate Fibers by Wet-Spinning. Adv. Mater. Res. 2013, 796, 87–91. [Google Scholar] [CrossRef]
- Qin, Y. Alginate fibres: An overview of the production processes and applications in wound management. Polym. Int. 2007, 57, 171–180. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Q.; Ma, X.; Quan, F.; Wang, J.; Xia, Y. The preparation of alginate-AgNPs composite fiber with green approach and its antibacterial activity. J. Ind. Eng. Chem. 2015, 24, 188–195. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, R.; Ci, M.; Sui, S.; Zhu, P. Sodium alginate/cellulose nanocrystal fibers with enhanced mechanical strength prepared by wet spinning. J. Eng. Fibers Fabr. 2019, 14, 155892501984755. [Google Scholar] [CrossRef] [Green Version]
- Bedê, P.M.; Da Silva, M.H.P.; Figueiredo, A.B.-H.D.S.; Finotelli, P.V. Nanostructured magnetic alginate composites for biomedical applications. Polímeros 2017, 27, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, M.; Alboofetileh, M.; Rezaei, M.; Behrooz, R. Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocoll. 2013, 32, 416–424. [Google Scholar] [CrossRef]
- Rhim, J.-W. Physical and mechanical properties of water resistant sodium alginate films. LWT Food Sci. Technol. 2004, 37, 323–330. [Google Scholar] [CrossRef]
- Ureña-Benavides, E.E.; Brown, P.J.; Kitchens, C.L. Effect of Jet Stretch and Particle Load on Cellulose Nanocrystal−Alginate Nanocomposite Fibers. Langmuir 2010, 26, 14263–14270. [Google Scholar] [CrossRef]
- Müller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Sanz, Y.E.; Lagaron, J.M.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; et al. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials 2017, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Luo, J.; Gulgunje, P.V.; Kumar, S. Structural and Functional Fibers. Annu. Rev. Mater. Res. 2017, 47, 331–359. [Google Scholar] [CrossRef]
- Deepa, B.; Abraham, E.; Pothan, L.A.; Cordeiro, N.; Faria, M.; Thomas, S. Biodegradable Nanocomposite Films Based on Sodium Alginate and Cellulose Nanofibrils. Materials 2016, 9, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, B.; Huang, Q.; Yu, B.; Long, G.; Chen, H. A fractal model for predicting oxygen effective diffusivity of porous media with rough surfaces under dry and wet conditions. Fractals 2021, 29, 2150076. [Google Scholar] [CrossRef]
- Xiao, B.; Zhang, Y.; Wang, Y.; Jiang, G.; Liang, M.; Chen, X.; Long, G. A fractal model for kozeny–Carman constant and dimensionless permeability of fibrous porous media with roughened surfaces. Fractals 2019, 27, 1950116. [Google Scholar] [CrossRef]
- Xiao, B.; Huang, Q.; Chen, H.; Chen, X.; Long, G. A fractal model for capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media. Fractals 2021, 29, 2150017. [Google Scholar] [CrossRef]
- Abe, K.; Iwamoto, A.S.; Yano, H. Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood. Biomacromolecules 2007, 8, 3276–3278. [Google Scholar] [CrossRef]
- Alle, M.; Bandi, R.; Lee, S.-H.; Kim, J.-C. Recent trends in isolation of cellulose nanocrystals and nanofibrils from various forest wood and nonwood products and their application. In Nanomaterials for Agriculture and Forestry Applications; Elsevier BV: Amsterdam, The Netherlands, 2020; pp. 41–80. [Google Scholar]
- Lee, S.-H.; Kim, H.-J.; Kim, J.-C. Nanocellulose Applications for Drug Delivery: A Review. J. For. Environ. Sci. 2019, 35, 141–149. [Google Scholar]
- Kwon, G.-J.; Han, S.-Y.; Park, C.-W.; Park, J.-S.; Lee, E.-A.; Kim, N.-H.; Alle, M.; Bandi, R.; Lee, S.-H. Adsorption Characteristics of Ag Nanoparticles on Cellulose Nanofibrils with Different Chemical Compositions. Polymers 2020, 12, 164. [Google Scholar] [CrossRef] [Green Version]
- Torres, P.; Balcells, M.; Cequier, E.; Canela-Garayoa, R. Effect of Four Novel Bio-Based DES (Deep Eutectic Solvents) on Hardwood Fractionation. Molecules 2020, 25, 2157. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Sang, Z.; Zhang, W.; Zhou, Z.; Fu, H.; Tan, Y.; Sui, K.; Xia, Y. Functionalized alginate with liquid-like behaviors and its application in wet-spinning. Carbohydr. Polym. 2017, 174, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.R.; Lee, K.H.; Kang, E.; Kim, D.-S.; Lee, S.-H. Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers. Biomicrofluidics 2011, 5, 022208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.J.; Huang, P.L.; Chen, J.H.; Wu, Y.Y.; Liu, Q.Y.; Sun, R.C. Comparison of acid-hydrolyzed and TEMPO-oxidized nanocellulose for reinforcing alginate fibers. BioResources 2017, 12, 8180–8198. [Google Scholar]
Sample | Average Diameter (nm) |
---|---|
PCNF | 17.4 ± 2.1 |
LCNF | 16.5 ± 1.2 |
TOLCNF | 3.5 ± 1.0 |
Ratio of CNF/AL | Viscosity (mPa·s) | ||||
---|---|---|---|---|---|
CNF | AL | SR 0.40 s−1 | SR 0.66 s−1 | SR 1.32 s−1 | |
AL | - | 100 | 1856 | 1818 | 1727 |
PCNF/AL | 5 | 95 | 1843 | 1667 | 1515 |
10 | 90 | 1693 | 1652 | 1485 | |
30 | 70 | 2223 | 1909 | 1455 | |
LCNF/AL | 5 | 95 | 1570 | 1142 | 970 |
10 | 90 | 2168 | 1992 | 1769 | |
30 | 70 | 4425 | 3258 | 2371 | |
TOLCNF/AL | 5 | 95 | 1970 | 1689 | 1371 |
10 | 90 | 3475 | 2424 | 1640 | |
30 | 70 | N/A | N/A | N/A |
Ratio of CNF/AL | Spinning Rate (mL/min) | Average Diameter (µm) | ||
---|---|---|---|---|
CNF | AL | |||
AL | - | 100 | 0.1 | 50.68 ± 3.08 |
1.0 | 61.27 ± 3.20 | |||
3.0 | 66.22 ± 6.28 | |||
PCNF/AL | 5 | 95 | 1.0 | 53.25 ± 3.10 |
10 | 90 | 1.0 | 56.15 ± 6.09 | |
30 | 70 | 0.1 | 51.01 ± 5.15 | |
1.0 | 69.06 ± 4.34 | |||
3.0 | 73.70 ± 9.42 | |||
LCNF/AL | 5 | 95 | 1.0 | 40.20 ± 4.80 |
10 | 90 | 1.0 | 47.44 ± 2.63 | |
30 | 70 | 0.1 | 50.08 ± 3.45 | |
1.0 | 50.36 ± 2.65 | |||
3.0 | 64.08 ± 3.70 | |||
TOLCNF/AL | 5 | 95 | 1.0 | 40.17 ± 4.41 |
10 | 90 | 1.0 | 42.19 ± 5.46 | |
30 | 70 | 0.1 | 44.21 ± 4.89 | |
1.0 | 49.89 ± 3.92 | |||
3.0 | 70.37 ± 5.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-S.; Park, C.-W.; Han, S.-Y.; Lee, E.-A.; Cindradewi, A.W.; Kim, J.-K.; Kwon, G.-J.; Seo, Y.-H.; Yoo, W.-J.; Gwon, J.; et al. Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate. Polymers 2021, 13, 1709. https://doi.org/10.3390/polym13111709
Park J-S, Park C-W, Han S-Y, Lee E-A, Cindradewi AW, Kim J-K, Kwon G-J, Seo Y-H, Yoo W-J, Gwon J, et al. Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate. Polymers. 2021; 13(11):1709. https://doi.org/10.3390/polym13111709
Chicago/Turabian StylePark, Ji-Soo, Chan-Woo Park, Song-Yi Han, Eun-Ah Lee, Azelia Wulan Cindradewi, Jeong-Ki Kim, Gu-Joong Kwon, Young-Ho Seo, Won-Jae Yoo, Jaegyoung Gwon, and et al. 2021. "Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate" Polymers 13, no. 11: 1709. https://doi.org/10.3390/polym13111709
APA StylePark, J. -S., Park, C. -W., Han, S. -Y., Lee, E. -A., Cindradewi, A. W., Kim, J. -K., Kwon, G. -J., Seo, Y. -H., Yoo, W. -J., Gwon, J., & Lee, S. -H. (2021). Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate. Polymers, 13(11), 1709. https://doi.org/10.3390/polym13111709