Synthesis and Characterization of a Bioconjugate Based on Oleic Acid and L-Cysteine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Characterization Techniques
3. Results
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thermo Scientific. Crosslinking Technology Handbook; Thermo Fisher Scientific Inc.: Waltham, MA, USA, 2012. [Google Scholar]
- Infante, M.R.; Pérez, L.; Pinazo, A.; Clapés, P.; Morán, M.C.; Angelet, M.; García, M.T.; Vinardell, M.P. Amino acid-based surfactants. C. R. Chim. 2004, 7, 583–592. [Google Scholar] [CrossRef]
- Bordes, R.; Holmberg, K. Amino acid-based surfactants—Do they deserve more attention? Adv. Colloid Interface Sci. 2015, 222, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Macián, M.; Seguer, J.; Infante, M.R.; Selve, C.; Vinardell, M.P. Preliminary studies of the toxic effects of non-ionic surfactants derived from lysine. Toxicology 1996, 106, 1–9. [Google Scholar] [CrossRef]
- Morán, M.C.; Pinazo, A.; Pérez, L.; Clapés, P.; Angelet, M.; García, M.T.; Vinardell, M.P.; Infante, M.R. “Green” amino acid-based surfactants. Green Chem. 2004, 6, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Rondel, C.; Alric, I.; Mouloungui, Z.; Blanco, J.F.; Silvestre, F. Synthesis and properties of lipoamino acid-fatty acid mixtures: Influence of the amphiphilic structure. J. Surfactants Deterg. 2009, 12, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 9780470541944. [Google Scholar]
- Bajani, D.; Gharai, D.; Dey, J. A comparison of the self-assembly behaviour of sodium N-lauroyl sarcosinate and sodium N-lauroyl glycinate surfactants in aqueous and aqueo-organic media. J. Colloid Interface Sci. 2018, 529, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Lochhead, R.Y.; Maibach, H.I.; Yamashita, Y. Cosmetic Science and Technology: Theoretical Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128020548. [Google Scholar]
- Macfarlane, M.G. Phosphatidylglycerols and Lipoamino Acids; Academic Press Inc.: London, UK, 1964; Volume 2. [Google Scholar]
- Nnanna, I.A.J.X. Protein-Based Surfactants; Marcel Dekker. Inc.: New York, NY, USA, 2001; ISBN 082470004X. [Google Scholar]
- Cartwright, N.J. Serratamic acid, a derivative of L-serine produced by organisms of the Serratia group. Biochem. J. 1955, 60, 238–242. [Google Scholar] [CrossRef] [Green Version]
- Hell, R. Molecular physiology of plant sulfur metabolism. Planta 1997, 202, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Bulaj, G. Formation of disulfide bonds in proteins and peptides. Biotechnol. Adv. 2005, 23, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Komarov, P.; Ovchinnikov, M.; Khizhnyak, S.; Alekseev, V.; Mikhailov, I.; Pakhomov, P. On Molecular Gelation Mechanism of L-Cysteine Based Hydrogel. Nanosci. Nanoeng. 2013, 1, 23–35. [Google Scholar] [CrossRef]
- Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Org. Process Res. Dev. 2016, 20, 140–177. [Google Scholar] [CrossRef]
- Sheehan, J.C.; Hess, G.P. A new method of forming peptide bonds. J. Am. Chem. Soc. 1955, 77, 1067–1068. [Google Scholar] [CrossRef]
- Madison, S.A.; Carnali, J.O. PH optimization of amidation via carbodiimides. Ind. Eng. Chem. Res. 2013, 52, 13547–13555. [Google Scholar] [CrossRef]
- Michael, B.; Smith, J.M. March’s Advanced Organic chemistry: Reactions, Mechanisms, and Structure; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Ullah, I.; Ahmad, K.; Shah, A.; Badshah, A.; Ali Rana, U.; Shakir, I.; Zia-Ur-Rehman, Z.; Khan, S.Z. Synthesis, characterization and effect of a solvent mixture on the CMC of a Thio-based novel cationic surfactant using a uv-visible spectroscopic technique. J. Surfactants Deterg. 2014, 17, 501–507. [Google Scholar] [CrossRef]
- Rather, M.A.; Rather, G.M.; Pandit, S.A.; Bhat, S.A.; Bhat, M.A. Determination of cmc of imidazolium based surface active ionic liquids through probe-less UV-vis spectrophotometry. Talanta 2015, 131, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, N.E. NMR Data Interpretation Explained: Understanding 1D and 2D NMR Spectra of Organic Compounds and Natural Products; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 9781118370223. [Google Scholar]
- Reich, H.J. Proton Chemical Shifts Database. 2017. Available online: https://www2.chemistry.msu.edu/faculty/reusch/OrgPage/nmr.htm (accessed on 13 April 2021).
- López-Millán, A.; Zavala-Rivera, P.; Esquivel, R.; Carrillo, R.; Alvarez-Ramos, E.; Moreno-Corral, R.; Guzmán-Zamudio, R.; Lucero-Acuña, A. Aqueous-Organic Phase Transfer of Gold and Silver Nanoparticles Using Thiol-Modified Oleic Acid. Appl. Sci. 2017, 7, 273. [Google Scholar] [CrossRef] [Green Version]
- Cameron, D.G.; Umemura, J.; Wong, P.T.T.; Mantsch, H.H. A fourier transform infrared study of the coagel to micelle transitions of sodium laurate and sodium oleate. Colloids Surf. 1982, 4, 131–145. [Google Scholar] [CrossRef]
- Yea, D.N.; Lee, S.M.; Jo, S.H.; Yu, H.P.; Lim, J.C. Preparation of Environmentally Friendly Amino Acid-Based Anionic Surfactants and Characterization of Their Interfacial Properties for Detergent Products Formulation. J. Surfactants Deterg. 2018, 21, 541–552. [Google Scholar] [CrossRef]
- Bellamy, L.J. The Infrared Spectra of Complex Modules, 2nd ed.; Chapman and Hall: London, UK, 1980; Volume 53, ISBN 9788578110796. [Google Scholar]
- Cebi, N.; Dogan, C.E.; Develioglu, A.; Yayla, M.E.A.; Sagdic, O. Detection of L-Cysteine in wheat flour by Raman microspectroscopy combined chemometrics of HCA and PCA. Food Chem. 2017, 228, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Peter, L. IR and Raman Spectroscopy; Elsevier Inc.: San Diego, CA, USA, 2011; Volume 53, ISBN 9780123869845. [Google Scholar]
- Suga, K.; Kondo, D.; Otsuka, Y.; Okamoto, Y.; Umakoshi, H. Characterization of Aqueous Oleic Acid/Oleate Dispersions by Fluorescent Probes and Raman Spectroscopy. Langmuir 2016, 32, 7606–7612. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vizcarra-Pacheco, M.; Ley-Flores, M.; Matrecitos-Burruel, A.M.; López-Esparza, R.; Fernández-Quiroz, D.; Lucero-Acuña, A.; Zavala-Rivera, P. Synthesis and Characterization of a Bioconjugate Based on Oleic Acid and L-Cysteine. Polymers 2021, 13, 1791. https://doi.org/10.3390/polym13111791
Vizcarra-Pacheco M, Ley-Flores M, Matrecitos-Burruel AM, López-Esparza R, Fernández-Quiroz D, Lucero-Acuña A, Zavala-Rivera P. Synthesis and Characterization of a Bioconjugate Based on Oleic Acid and L-Cysteine. Polymers. 2021; 13(11):1791. https://doi.org/10.3390/polym13111791
Chicago/Turabian StyleVizcarra-Pacheco, Marco, María Ley-Flores, Ana Mizrahim Matrecitos-Burruel, Ricardo López-Esparza, Daniel Fernández-Quiroz, Armando Lucero-Acuña, and Paul Zavala-Rivera. 2021. "Synthesis and Characterization of a Bioconjugate Based on Oleic Acid and L-Cysteine" Polymers 13, no. 11: 1791. https://doi.org/10.3390/polym13111791
APA StyleVizcarra-Pacheco, M., Ley-Flores, M., Matrecitos-Burruel, A. M., López-Esparza, R., Fernández-Quiroz, D., Lucero-Acuña, A., & Zavala-Rivera, P. (2021). Synthesis and Characterization of a Bioconjugate Based on Oleic Acid and L-Cysteine. Polymers, 13(11), 1791. https://doi.org/10.3390/polym13111791