Recent Advances in Elongational Flow Dominated Polymer Processing Technologies
Abstract
:1. Introduction
2. Plasticizing and Conveying Devices, Mechanism, and Simulations
2.1. The Extentional Mixing Element in Conventional Screw Extruders
2.2. The Vane Extruders
2.3. The Eccentric Rotor Extruders
3. Applications of Elongational Flow Dominated Plasticizing and Convey Devices
3.1. Single Polymer/Polymer Composites
3.2. Polymer-Inorganic Composites
3.3. Fiber-Reinforced Polymer Composites
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Sanz, Y.E.; Lagaron, J.M.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; et al. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials 2017, 7, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachopoulos, J.; Strutt, D. Polymer processing. Mater. Sci. Technol. 2003, 19, 1161–1169. [Google Scholar] [CrossRef]
- Fu, S.-Y.; Sun, Z.; Huang, P.; Li, Y.-Q.; Hu, N. Some basic aspects of polymer nanocomposites: A critical review. Nano Mater. Sci. 2019, 1, 2–30. [Google Scholar] [CrossRef]
- Thakur, V.K.; Kessler, M.R. Self-healing polymer nanocomposite materials: A review. Polymer 2015, 69, 369–383. [Google Scholar] [CrossRef] [Green Version]
- Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 2017, 132, 368–393. [Google Scholar] [CrossRef]
- Pandey, V.; Maia, J.M. Extension-dominated improved dispersive mixing in single-screw extrusion. Part 1: Computational and experimental validation. J. Appl. Polym. Sci. 2020, 138, 49716. [Google Scholar] [CrossRef]
- Rauwendaal, C.; Osswald, T.; Gramann, P.; Davis, B. Design of Dispersive Mixing Devices. Int. Polym. Process. 1999, 14, 28–34. [Google Scholar] [CrossRef]
- Elemans, P.H.M.; Van Wunnik, J.M. The effect of feeding mode on dispersive mixing efficiency in single-screw extrusion. Polym. Eng. Sci. 2001, 41, 1099–1106. [Google Scholar] [CrossRef]
- Miroshnikov, Y.P.; Egorov, A.K.; Egorova, M.V. Measuring of coalescence in polymer melt blends flowing through converging channels. J. Appl. Polym. Sci. 2011, 120, 2724–2733. [Google Scholar] [CrossRef]
- Pandey, V.; Chen, H.; Ma, J.; Maia, J.M. Extension-dominated improved dispersive mixing in single-screw extrusion. Part 2: Comparative analysis with twin-screw extruder. J. Appl. Polym. Sci. 2021, 138, 49765. [Google Scholar] [CrossRef]
- Chen, H.; Maia, J.M. Improving dispersive mixing in compatibilized polystyrene/polyamide-6 blends via extension-dominated reactive single-screw extrusion. J. Polym. Eng. 2021, 41, 397–403. [Google Scholar] [CrossRef]
- Chen, H.; Pandey, V.; Carson, S.; Maia, J.M. Enhanced Dispersive Mixing in Twin-Screw Extrusion via Extension-Dominated Static Mixing Elements of Varying Contraction Ratios. Int. Polym. Process. 2020, 35, 37–49. [Google Scholar] [CrossRef]
- Chen, H.; Guo, M.; Schiraldi, D.; Maia, J.M. Morphology optimization of poly(ethylene terephthalate)/polyamide blends compatibilized via extension-dominated twin-screw extrusion. J. Polym. Eng. 2021, 41, 218–225. [Google Scholar] [CrossRef]
- Qu, J.-P.; Zhang, G.-Z.; Chen, H.-Z.; Yin, X.-C.; He, H.-Z. Solid conveying in vane extruder for polymer processing: Effects on pressure establishment. Polym. Eng. Sci. 2012, 52, 2147–2156. [Google Scholar] [CrossRef]
- Wu, T.; Yuan, D.; Qu, J.P. Preparation of poly(L-lactide)/poly(ethylene glycol)/organo-modified montmorillonite nanocomposites via melt intercalation under continuous elongation flow. J. Polym. Eng. 2018, 38, 449–460. [Google Scholar] [CrossRef]
- Wu, T.; Tong, Y.; Qiu, F.; Yuan, D.; Zhang, G.; Qu, J. Morphology, rheology property, and crystallization behavior of PLLA/OMMT nanocomposites prepared by an innovative eccentric rotor extruder. Polym. Adv. Technol. 2017, 29, 41–51. [Google Scholar] [CrossRef]
- Wu, T.; Huang, Z.-X.; Wang, D.-Z.; Qu, J.-P. Effect of continuous elongational flow on structure and properties of short glass fiber reinforced polyamide 6 composites. Adv. Ind. Eng. Polym. Res. 2019, 2, 93–101. [Google Scholar] [CrossRef]
- Carson, S.O.; Covas, J.A.; Maia, J.M. A New Extensional Mixing Element for Improved Dispersive Mixing in Twin-Screw Extrusion, Part 1: Design and Computational Validation. Adv. Polym. Technol. 2015, 36, 455–465. [Google Scholar] [CrossRef]
- Qu, J.P. Method and a Device for Plasticizing and Transporting Polymer Material Based on Elongation Rheology. US 2010/0135102A1, 6 August 2009. [Google Scholar]
- Qu, J.-P.; Zhao, X.-Q.; Li, J.-B.; Cai, S.-Q. Power consumption in the compacting process of polymer particulate solids in a vane extruder. J. Appl. Polym. Sci. 2012, 127, 3923–3932. [Google Scholar] [CrossRef]
- Li, J.-B.; Qu, J.-P.; Xu, Y.-S.; Zhang, G.-Z.; Zhai, S.-F.; Zhao, Y.-Q.; Yin, X.-C. Solids conveying in the solids compaction zone of vane extruder. Polym. Eng. Sci. 2014, 55, 719–728. [Google Scholar] [CrossRef]
- Xie, H.-L.; Wen, J.-S.; Fan, D.-J.; Lei, S.-K.; Jiang, S.-C.; Zhou, X.-L. Numerical Simulation of Mixing Characteristics and Energy Consumption in Vane Extruders with Different Structure Parameters. J. Macromol. Sci. Part. B 2017, 48, 395–408. [Google Scholar] [CrossRef]
- Huang, Z.; Luo, P.; Tong, J.; Su, F. Velocity Distribution of Extensional Flow Fields in an Eccentric Cylinder of an Extensional Extruder. J. Macromol. Sci. Part. B 2018, 57, 732–745. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, G.; Yin, X. Volume Pulsed Deformation Plastic and Conveying Method and Device by Eccentric Rotor. US 2019/10307950B2, 4 June 2019. [Google Scholar]
- Wen, J.-S.; Yang, M.-K.; Fan, D.-J. Numerical simulation of energy consumption in the melt conveying section of eccentric rotor extruders. Adv. Polym. Technol. 2018, 37, 3335–3347. [Google Scholar] [CrossRef]
- Fan, D.-J.; Yang, M.-K.; Wen, J.-S. Numerical Simulation of Mixing Characteristics in the Eccentric Rotor Extruder with Different Process Conditions and Structural Parameters. Adv. Polym. Technol. 2019, 8132308. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cao, C.; Yu, D.; Chen, X. Deformation and Stress Response of Carbon Nanotubes/UHMWPE Composites under Extensional-Shear Coupling Flow. Appl. Compos. Mater. 2017, 25, 35–43. [Google Scholar] [CrossRef]
- Wang, J.; Cao, C.; Chen, X.; Ren, S.; Chen, Y.; Yu, D.; Chen, X. Orientation and Dispersion Evolution of Carbon Nanotubes in Ultra High Molecular Weight Polyethylene Composites under Extensional-Shear Coupled Flow: A Dissipative Particle Dynamics Study. Polymers 2019, 11, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.X.; Li, P.; Cao, C.L.; Ren, S.J.; Yu, D.S. A Dissipative Particle Dynamics Study of Flow Behaviors in Ultra High Molecular Weight Polyethylene/Polyamide 6 Blends Based on Souza-Martins Method. Polymers 2019, 11, 1275. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, X.; Cao, C.; Yu, D. Chain conformation and dynamics in ultrahigh molecular weight polyethylene melts undergoing extensional–shear coupled flow: Insight from dissipative particle dynamics simulation. Polym. Int. 2020, 69, 1213–1219. [Google Scholar] [CrossRef]
- Cao, C.; Chen, X.; Wang, J.; Lin, Y.; Guo, Y.; Qian, Q.; Chen, Q.; Feng, Y.; Yu, D.; Chen, X. Structure and properties of ultrahigh molecular weight polyethylene processed under a consecutive elongational flow. J. Polym. Res. 2017, 25, 16. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, N.; Yu, X.; Zhang, G.; Liu, S.; Tan, B.; Liu, L. Experimental Investigation of Polymer Pellets Melting Mechanisms in Vane Extruders. Adv. Polym. Technol. 2013, 32, 21336. [Google Scholar] [CrossRef]
- Yin, X.; Li, S.; He, G.; Zhang, G.; Qu, J. Experimental Study of the Extrusion Characteristic of a Vane Extruder Based on Extensional Flow. Adv. Polym. Technol. 2016, 35, 21545. [Google Scholar]
- Liu, H.; Luo, Y.; Zhang, G.; Chen, J.; Yang, Z.; Qu, J. Modeling of Pressure-Induced Melt Removal Melting in Vane Extruder for Polymer Processing. Adv. Polym. Technol. 2014, 33, 21452. [Google Scholar] [CrossRef]
- Wu, H.; Lv, S.; He, Y.; Qu, J.-P. The study of the thermomechanical degradation and mechanical properties of PET recycled by industrial-scale elongational processing. Polym. Test. 2019, 77, 105882. [Google Scholar] [CrossRef]
- Poyekar, A.V.; Bhattacharyya, A.R.; Panwar, A.S.; Simon, G.; Sutar, D.S. Influence of Noncovalent Modification on Dispersion State of Multiwalled Carbon Nanotubes in Melt-Mixed Immiscible Polymer Blends. ACS Appl. Mater. Interfaces 2014, 6, 11054–11067. [Google Scholar] [CrossRef]
- Dimzoski, B.; Fortelný, I.; Šlouf, M.; Sikora, A.; Michálková, D. Morphology evolution during cooling of quiescent immiscible polymer blends: Matrix crystallization effect on the dispersed phase coalescence. Polym. Bull. 2013, 70, 263–275. [Google Scholar] [CrossRef]
- Rosales, C.; Bernal, C.; Pettarin, V. Effect of blend composition and related morphology on the quasi-static fracture performance of LLDPE/PP blends. Polym. Test. 2020, 90, 106598. [Google Scholar] [CrossRef]
- Salehiyan, R.; Ray, S.S.; Ojijo, V. Processing-driven morphology development and crystallization behavior of immiscible polylactide/poly(vinylidene fluoride) blends. Macromol. Mater. Eng. 2018, 303, 1800349. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.; Zhao, Y.; Fan, Q.; Yang, H.; Qu, J. Elongational effect on immiscible polymer blends via novel vane plasticating extruder. Mechanics 2017, 23, 900–907. [Google Scholar]
- He, H.Z.; Xue, F.; Jia, P.F.; He, G.J.; Huang, Z.X.; Liu, S.M.; Xue, B. Linear low-density polyethylene/poly(ethylene terephthalate) blends compatibilization prepared by an eccentric rotor extruder: A morphology, mechanical, thermal, and rheological study. J. Appl. Polym. Sci. 2018, 135, 46489. [Google Scholar] [CrossRef]
- He, H.-Z.; Xue, F.; Xue, B.; Liu, S.-M.; Huang, Z.-X.; Zhang, H. Improved Properties of Metallocene Polyethylene/Poly(ethylene terephthalate) Blends Processed by an Innovative Eccentric Rotor Extruder. Polymers 2020, 12, 585. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Lu, X.; Qu, J. Preparation and properties of biodegradable poly (lactic acid)/ethylene butyl acrylate glycidyl methacrylate blends via novel vane extruder. Plast. Rubber Compos. 2019, 48, 364–373. [Google Scholar] [CrossRef]
- He, Y.; Yang, Z.-T.; Qu, J.-P. Super-toughened poly(lactic acid)/thermoplastic poly(ether)urethane nanofiber composites with in-situ formation of aligned nanofibers prepared by an innovative eccentric rotor extruder. Compos. Sci. Technol. 2019, 169, 135–141. [Google Scholar] [CrossRef]
- He, Y.; Xu, W.-H.; Zhang, H.; Qu, J.-P. Constructing Bone-Mimicking High-Performance Structured Poly(lactic acid) by an Elongational Flow Field and Facile Annealing Process. ACS Appl. Mater. Interfaces 2020, 12, 13411–13420. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-T.; Yang, J.-X.; Fan, J.-H.; Feng, Y.-H.; Huang, Z.-X. Preparation of super-toughened Poly(L-lactide) composites under elongational flow: A strategy for balancing stiffness and ductility. Compos. Sci. Technol. 2021, 208, 108758. [Google Scholar] [CrossRef]
- Bai, H.; Huang, C.; Xiu, H.; Zhang, Q.; Deng, H.; Wang, K.; Chen, F.; Fu, Q. Significantly improving oxygen barrier properties of polylactide via constructing parallelaligned shish-kebab-like crystals with well-interlocked boundaries. Biomacromolecules 2014, 15, 1507–1514. [Google Scholar] [CrossRef]
- Liu, T.; Lian, X.; Li, L.; Peng, X.; Kuang, T. Facile fabrication of fully biodegradable and biorenewable poly (lactic acid)/poly (butylene adipate-co-terephthalate) insitu nanofibrillar composites with high strength, good toughness and excellent heat resistance. Polym. Degrad. Stabil. 2020, 171, 109044. [Google Scholar] [CrossRef]
- Qu, J.; Yang, Z.; Feng, Y.; Yin, X. Biaxial or Tri-Axial Eccentric Rotor Volume Pulsed Deformation Plasticizing Method and Device. US 2018/0200937A1, 16 September 2017. [Google Scholar]
- Zhang, H.; Wei, X.; Qu, J. Microstructure evolution and mechanism of PLA/PVDF hybrid dielectrics fabricated under elongational flow. Polymer 2021, 224, 123719. [Google Scholar] [CrossRef]
- Zhang, H.C. Study on the Melt Extrusion Process of UHMWPE and Its Morphology and Properties under Elongational Flow. Ph.D. Thesis, South China University of Technology, Guangzhou, China, 2016. [Google Scholar]
- Huang, Z.-X.; Zhao, M.-L.; Qu, J.-P. Polyethylene-Based Single Polymer Composites Prepared under Elongational Flow for High-Voltage Applications. Ind. Eng. Chem. Res. 2020, 59, 18607–18615. [Google Scholar] [CrossRef]
- Wu, T.; Yuan, D.; Qiu, F.; Chen, R.; Zhang, G.; Qu, J. Polypropylene/polystyrene/clay blends prepared by an innovative eccentric rotor extruder based on continuous elongational flow: Analysis of morphology, rheology property, and crystallization behavior. Polym. Test. 2017, 63, 73–83. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Tan, Y.-B.; Chen, R.-Y.; Zhang, G.-Z.; Qu, J.-P. Dimensional impact of nanofillers on the micromorphology and rheology of PP/PS composites under continuous elongation flow. Polym. Adv. Technol. 2018, 29, 2952–2962. [Google Scholar] [CrossRef]
- Tan, L.; He, Y.; Qu, J. Structure and properties of Polylactide/Poly(butylene succinate)/Organically Modified Montmorillonite nanocomposites with high-efficiency intercalation and exfoliation effect manufactured via volume pulsating elongation flow. Polymer 2019, 180, 121656. [Google Scholar] [CrossRef]
- Wu, T.; He, Y.; Qu, J. Effect of continuous elongational flow on structure and properties of poly(L-lactic acid)/poly(ethylene glycol) blend and its organo-modified montmorillonite nanocomposites. Polym. Compos. 2019, 40, E617–E628. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, T.; Lin, W.; Tan, Y.; Chen, R.; Huang, Z.; Yin, X.; Qu, J. Preparation of polymer/clay nanocomposites via melt intercalation under continuous elongation flow. Compos. Sci. Technol. 2017, 145, 157–164. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, J.; Yang, L.; Chen, R.; Zou, W.; Lin, X.; Qu, J. Preparation, characterization and properties of PLA/TiO2 nanocomposites based on a novel vane extruder. RSC Adv. 2015, 5, 4639–4647. [Google Scholar] [CrossRef]
- Jia, S.; Qu, J.; Zhai, S.; Huang, Z.; Wu, C.; Chen, R.; Feng, Y. Effects of dynamic elongational flow on the dispersion and mechanical properties of low-density polyethylene/nanoprecipitated calcium carbonate composites. Polym. Compos. 2013, 35, 884–891. [Google Scholar] [CrossRef]
- Chen, R.; Zou, W.; Wu, C.; Jia, S.; Huang, Z.; Zhang, G.; Yang, Z.; Qu, J. Poly(lactic acid)/poly(butylene succinate)/calcium sulfate whiskers biodegradable blends prepared by vane extruder: Analysis of mechanical properties, morphology, and crystallization behavior. Polym. Test. 2014, 34, 1–9. [Google Scholar] [CrossRef]
- Meng, C.; Qu, J.-P. Structure-property relationships in polypropylene/poly(ethylene-co-octene)/multiwalled carbon nanotube nanocomposites prepared via a novel eccentric rotor extruder. J. Polym. Eng. 2018, 38, 427–435. [Google Scholar] [CrossRef]
- Lin, W.; Hou, A.; Feng, Y.-H.; Yang, Z.-T.; Qu, J.-P. UHMWPE/organoclay nanocomposites fabricated by melt intercalation under continuous elongational flow: Dispersion, thermal behaviors and mechanical properties. Polym. Eng. Sci. 2018, 59, 547–554. [Google Scholar] [CrossRef]
- Mars, J.; Chebbi, E.; Wali, M.; Dammak, F. Numerical and experimental investigations of low velocity impact on glass fiber-reinforced polyamide. Compos. Part B-Eng. 2018, 146, 116–123. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Wu, C.; Jia, S.; Chen, R.; Huang, Z.; Zhai, S.; Feng, Y.; Yang, Z.; Qu, J. Composites of sisal fiber/polypropylene based on novel vane extruder: Effect of interface and damage on mechanical properties. J. Reinf. Plast. Compos. 2013, 32, 1907–1915. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Onifade, D.V.; Ighalo, J.O.; Adeoye, A.S. A review of coir fiber reinforced polymer composites. Compos. Part. B Eng. 2019, 176, 107305. [Google Scholar] [CrossRef]
- Guo, K.; Wang, D.; Zhang, G.; Song, J.; Wu, T.; Qu, J. Effect of series explosion effects on the fiber length, fiber dispersion and structure properties in glass fiber reinforced polyamide 66. Polym. Adv. Technol. 2021, 32, 505–513. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Chen, X.; Yu, D. Recent Advances in Elongational Flow Dominated Polymer Processing Technologies. Polymers 2021, 13, 1792. https://doi.org/10.3390/polym13111792
Yuan Z, Chen X, Yu D. Recent Advances in Elongational Flow Dominated Polymer Processing Technologies. Polymers. 2021; 13(11):1792. https://doi.org/10.3390/polym13111792
Chicago/Turabian StyleYuan, Zhongke, Xiaochuan Chen, and Dingshan Yu. 2021. "Recent Advances in Elongational Flow Dominated Polymer Processing Technologies" Polymers 13, no. 11: 1792. https://doi.org/10.3390/polym13111792
APA StyleYuan, Z., Chen, X., & Yu, D. (2021). Recent Advances in Elongational Flow Dominated Polymer Processing Technologies. Polymers, 13(11), 1792. https://doi.org/10.3390/polym13111792