Warpage Prediction of RHCM Crystalline Parts Based on Multi-Layers
Abstract
:1. Introduction
2. Experimental
2.1. Part Preparation
2.2. Polarizing Microscope Experiment
2.3. WAXD Experiment
2.4. 3D Scanning
3. Methodology
4. Results and Discussion
4.1. Multi-Layer Structure of Injection-Molded Parts
4.1.1. Skin-Core Structures Investigated by PLM
4.1.2. Crystallinity of Each Layer
4.2. Temperature Histories of Polymer
4.3. Warpage Prediction
4.4. Comparation of Warpages of Experiment and Prediction
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nian, S.-C.; Huang, M.-S.; Tsai, T.-H. Enhancement of induction heating efficiency on injection mold surface using a novel magnetic shielding method. Int. Commun. Heat Mass Transf. 2014, 50, 52–60. [Google Scholar] [CrossRef]
- Huang, M.-S.; Tai, N.-S. Experimental rapid surface heating by induction for micro-injection molding of light-guided plates. J. Appl. Polym. Sci. 2009, 113, 1345–1354. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, G.; Wang, G. Research on the reduction of sink mark and warpage of the molded part in rapid heat cycle molding process. Mater. Des. 2013, 47, 779–792. [Google Scholar] [CrossRef]
- Fitzharris, E.R.; Watanabe, N.; Rosen, D.W.; Shofner, M.L. Effects of material properties on warpage in fused deposition modeling parts. Int. J. Adv. Manuf. Technol. 2018, 95, 2059–2070. [Google Scholar] [CrossRef]
- Nian, S.-C.; Wu, C.-Y.; Huang, M.-S. Warpage control of thin-walled injection molding using local mold temperatures. Int. Commun. Heat Mass Transf. 2015, 61, 102–110. [Google Scholar] [CrossRef]
- Chang, R.Y.; Tsaur, B.D. Experimental and theoretical studies of shrinkage, warpage, and sink marks of crystalline polymer injection molded parts. Polym. Eng. Sci. 1995, 35, 1222–1230. [Google Scholar] [CrossRef]
- Hakimian, E.; Sulong, A.B. Analysis of warpage and shrinkage properties of injection-molded micro gears polymer composites using numerical simulations assisted by the Taguchi method. Mater. Des. 2012, 42, 62–71. [Google Scholar] [CrossRef]
- Guo, K.-Q.; Huang, H.-X. Cellular Structure and Warpage of Microcellular Injection Molded Electrical Boxes Fabricated at Higher Injection Speeds. Acta Polym. Sin. 2019, 50, 850–856. [Google Scholar]
- Izadi, O.; Silani, M.; Mosaddegh, P.; Farzin, M. Warpage and bending behavior of polymer–metal hybrids: Experimental and numerical simulations. Int. J. Adv. Manuf. Technol. 2018, 98, 873–885. [Google Scholar] [CrossRef]
- Sánchez, R.; Aisa, J.; Martinez, A.; Mercado, D. On the relationship between cooling setup and warpage in injection molding. Measurement 2012, 45, 1051–1056. [Google Scholar] [CrossRef]
- Sun, X.; Zeng, D.; Tibbenham, P.; Su, X.; Kang, H.-T. A new characterizing method for warpage measurement of injection-molded thermoplastics. Polym. Test. 2019, 76, 320–325. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, X.; Giacomin, A.J.; Zhao, G.; Wang, W. Suppressing shrinkage/warpage of PBT injection molded parts with fillers. Polym. Compos. 2018, 39, 2377–2384. [Google Scholar] [CrossRef]
- Fernandes, C.; Pontes, A.J.; Viana, J.C.; Gaspar-Cunha, A. Modeling and Optimization of the Injection-Molding Process: A Review. Adv. Polym. Technol. 2018, 37, 429–449. [Google Scholar] [CrossRef]
- Kitayama, S.; Onuki, R.; Yamazaki, K. Warpage reduction with variable pressure profile in plastic injection molding via sequential approximate optimization. Int. J. Adv. Manuf. Technol. 2014, 72, 827–838. [Google Scholar] [CrossRef]
- Sudsawat, S.; Sriseubsai, W. Warpage reduction through optimized process parameters and annealed process of injection-molded plastic parts. J. Mech. Sci. Technol. 2018, 32, 4787–4799. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Gu, J.; Li, Z.; Ruan, S.; Shen, C.; Wang, M. Pressure analysis of dynamic injection molding and process parameter optimization for reducing warpage of injection molded products. Polymers 2017, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- Yasin, S.B.M.; Mohd, N.F.; Mahmud, J.; Whashilah, N.S.; Razak, Z. A reduction of protector cover warpage via topology optimization. Int. J. Adv. Manuf. Technol. 2018, 98, 2531–2537. [Google Scholar] [CrossRef]
- Li, X.; Wei, Q.; Li, J.; Yang, J.; Guan, J.; Qiu, B.; Xu, J.; Wang, X. Numerical simulation on crystallization-induced warpage of injection-molded PP/EPDM part. J. Polym. Res. 2019, 26, 1–11. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Hwang, C.J.; Lee, B.-K. Numerical investigation of warpage in insert injection-molded lightweight hybrid products. Int. J. Precis. Eng. Manuf. 2017, 18, 187–195. [Google Scholar] [CrossRef]
- Sun, X.; Su, X.; Tibbenham, P.; Mao, J.; Tao, J. The application of modified PVT data on the warpage prediction of injection molded part. J. Polym. Res. 2016, 23, 86. [Google Scholar] [CrossRef]
- Li, X.P.; Zhao, G.Q.; Guan, Y.J. Characteristic of rapid heating cycle moulding and warpage analysis of products. Plast. Rubber Compos. 2011, 40, 425–432. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, G.; Guan, Y. Thermal response of an electric heating rapid heat cycle molding mold and its effect on surface appearance and tensile strength of the molded part. J. Appl. Polym. Sci. 2012, 101, 1339–1352. [Google Scholar] [CrossRef]
- Crema, L.; Sorgato, M.; Zanini, F.; Carmignato, S.; Lucchetta, G. Experimental analysis of mechanical properties and microstructure of long glass fiber reinforced polypropylene processed by rapid heat cycle injection molding. Compos. Part A Appl. Sci. Manuf. 2018, 107, 366–373. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Z.; Li, T.; Peng, X.; Jiang, S.; Turng, L.-S. Quantification of the Young’s modulus for polypropylene: Influence of initial crystallinity and service temperature. J. Appl. Polym. Sci. 2020, 137, 48581. [Google Scholar] [CrossRef]
- Li, J.; Zheng, W.; Jiang, S.; Chai, G. An experimental study of skin layer in rapid heat cycle molding. Polym. Plast. Technol. Eng. 2014, 53, 488–496. [Google Scholar] [CrossRef]
- Guilong, W.; Guoqun, Z.; Huiping, L.; Yanjin, G. Analysis of thermal cycling efficiency and optimal design of heating/cooling systems for rapid heat cycle injection molding process. Mater. Des. 2010, 31, 3426–3441. [Google Scholar] [CrossRef]
- Li, J.; Zhou, H.; Xu, F.; Jiang, S.; Zheng, W. β-Crystal formation in isotactic polypropylene due to rapid heat cycle molding. Polym. Adv. Technol. 2015, 26, 1312–1319. [Google Scholar] [CrossRef]
- Zhao, P.; Yang, W.; Wang, X.; Li, J.; Yan, B.; Fu, J. A novel method for predicting degrees of crystallinity in injection molding during packing stage. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 204–214. [Google Scholar] [CrossRef]
- Guo, J.; Narh, K.A. Computer simulation of stress-induced crystallization in injection molded thermoplastics. Polym. Eng. Sci. 2001, 41, 1996–2012. [Google Scholar] [CrossRef]
- Zhou, Y.; Deng, H.; Yu, F.; Bai, H.; Zhang, Q.; Chen, F.; Wang, K.; Fu, Q. Processing condition induced structural evolution in the alternating multi-layer structure during high speed thin-wall injection molding. Polymer 2016, 99, 49–58. [Google Scholar] [CrossRef]
- Maeda, K.; Yamada, K.; Yamada, K.; Kotaki, M.; Nishimura, H. Structure and fracture toughness of thin-wall polypropylene moulded at different injection speeds. Thin Walled Struct. 2018, 125, 12–20. [Google Scholar] [CrossRef]
- Li, J.; Yang, S.; Turng, L.-S.; Zheng, W.; Jiang, S. Comparative study of crystallization and lamellae orientation of isotactic polypropylene by rapid heat cycle molding and conventional injection molding. e-Polymers 2017, 17, 71–81. [Google Scholar]
- Ogden, R. Proceedings of the Royal Society A: Mathematical. Phys. Eng. Sci. 1972, 326, 565. [Google Scholar]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Liparoti, S.; Speranza, V.; Sorrentino, A.; Titomanlio, G. Mechanical properties distribution within polypropylene injection molded samples: Effect of mold temperature under uneven thermal conditions. Polymers 2017, 9, 585. [Google Scholar] [CrossRef] [Green Version]
- Ponçot, M.; Addiego, F.; Dahoun, A. True intrinsic mechanical behaviour of semi-crystalline and amorphous polymers: Influences of volume deformation and cavities shape. Int. J. Plast. 2013, 40, 126–139. [Google Scholar] [CrossRef]
- Van Drongelen, M.; van Erp, T.B.; Peters, G.W.M. Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of cooling rate and pressure. Polymer 2012, 53, 4758–4769. [Google Scholar] [CrossRef]
- Jones, R.M. Mechanics of Composite Materials; CRC Press: Boca Raton, FL, USA, 1998; ISBN 156032712X. [Google Scholar]
- Li, J.; Li, T.; Jia, Y.; Yang, S.; Jiang, S.; Turng, L.-S. Modeling and characterization of crystallization during rapid heat cycle molding. Polym. Test. 2018, 71, 182–191. [Google Scholar] [CrossRef]
- Bondarenko, E.V.; Motavkin, A.V.; Skorodumov, V.F. PVT Properties of crystalline polymers. Comparison of Theoretical Predictions and Experimental Data. Fibre Chem. 2014, 46, 228–230. [Google Scholar] [CrossRef]
- Pignon, B.; Tardif, X.; Lefèvre, N.; Sobotka, V.; Boyard, N.; Delaunay, D. A new PVT device for high performance thermoplastics: Heat transfer analysis and crystallization kinetics identification. Polym. Test. 2015, 45, 152–160. [Google Scholar] [CrossRef]
- Rodgers, P.A. Pressure–volume–temperature relationships for polymeric liquids: A review of equations of state and their characteristic parameters for 56 polymers. J. Appl. Polym. Sci. 1993, 48, 1061–1080. [Google Scholar] [CrossRef]
Layer | CIM (μm) | RHCM60 (μm) | RHCM90 (μm) |
---|---|---|---|
Upper skin layer | 310 | 252 | 221 |
Upper shear layer | 272 | 268 | 252 |
Core layer | 1345 | 1385 | 1247 |
Lower shear layer | 263 | 322 | 491 |
Lower skin layer | 310 | 273 | 289 |
Thickness Position x (mm) | CIM | RHCM60 | RHCM90 |
---|---|---|---|
0.1 | 35.24% | 40.28% | 42.41% |
0.4 | 37.34% | 42.43% | 44.83% |
1.2 | 43.50% | 45.56% | 47.51% |
2.0 | 36.96% | 40.82% | 42.93% |
2.4 | 35.10% | 37.60% | 38.15% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Bei, J.; Liu, W.; Xia, X.; Zhou, B.; Peng, X.; Jiang, S. Warpage Prediction of RHCM Crystalline Parts Based on Multi-Layers. Polymers 2021, 13, 1814. https://doi.org/10.3390/polym13111814
Li J, Bei J, Liu W, Xia X, Zhou B, Peng X, Jiang S. Warpage Prediction of RHCM Crystalline Parts Based on Multi-Layers. Polymers. 2021; 13(11):1814. https://doi.org/10.3390/polym13111814
Chicago/Turabian StyleLi, Jiquan, Jie Bei, Wenyong Liu, Xinxin Xia, Bida Zhou, Xiang Peng, and Shaofei Jiang. 2021. "Warpage Prediction of RHCM Crystalline Parts Based on Multi-Layers" Polymers 13, no. 11: 1814. https://doi.org/10.3390/polym13111814
APA StyleLi, J., Bei, J., Liu, W., Xia, X., Zhou, B., Peng, X., & Jiang, S. (2021). Warpage Prediction of RHCM Crystalline Parts Based on Multi-Layers. Polymers, 13(11), 1814. https://doi.org/10.3390/polym13111814