Estimations on Properties of Redox Reactions to Electrical Energy and Storage Device of Thermoelectric Pipe (TEP) Using Polymeric Nanofluids
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Empirical Formula Derivation of the Novel TEP Thermoelectric Performance
2.2. Structural Design of the Novel TEP and Experimental Apparatus
2.3. Thermoelectric Function Testing of the Novel TEP
3. Results
3.1. Effect of Adding Ionic Compounds on Nanofluids
3.2. Effect of Filling Quantity on Thermoelectric Performance of the Novel TEP
3.3. Effect of Vacuum Pressure on Thermoelectric Performance of the Novel TEP
3.4. Effect of Different Electrolytes on Thermoelectric Performance of the Novel TEP
3.5. Thermal Conductivity and Power Density Empirical Formulas of the Novel TEP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zohuri, B. Application of Heat Pipe in Industry. In Heat Pipe Design and Technology; Springer: Cham, Switzerland, 2016; pp. 335–394. [Google Scholar]
- Wang, J.C. U-and L-shaped heat pipes heat sinks for cooling electronic components employed a least square smoothing method. Microelectron. Reliab. 2014, 54, 1344–1354. [Google Scholar] [CrossRef]
- Wang, R.T.; Lee, Y.W.; Chen, S.L.; Wang, J.C. Performance effects of heat transfer and geometry on heat pipe thermal modules under forced convection. Int. Commun. Heat Mass Transf. 2014, 57, 140–149. [Google Scholar] [CrossRef]
- Zeghari, K.; Louahlia, H.; Le Masson, S. Experimental investigation of flat porous heat pipe for cooling TV box electronic chips. Appl. Therm. Eng. 2019, 163, 114267. [Google Scholar] [CrossRef]
- He, S.; Zhou, P.; Liu, W.; Liu, Z. Experimental study on thermal performance of loop heat pipe with a composite-material evaporator for cooling of electronics. Appl. Therm. Eng. 2020, 168, 114897. [Google Scholar] [CrossRef]
- Bulut, M.; Kandlikar, S.G.; Sozbir, N. A review of vapor chambers. Heat Transf. Eng. 2019, 40, 1551–1573. [Google Scholar] [CrossRef]
- Wang, R.T.; Wang, J.C. Optimization of heat flow analysis for exceeding hundred watts in HI-LEDs projectors. Int. Commun. Heat Mass Transf. 2015, 67, 153–162. [Google Scholar] [CrossRef]
- Wang, R.T.; Wang, J.C. Analysis of thermal conductivity in HI-LEDs lighting materials. J. Mech. Sci. Technol. 2017, 31, 2911–2921. [Google Scholar] [CrossRef]
- Wang, J.C. Thermal investigations on LED vapor chamber-based plates. Int. Commun. Heat Mass Transf. 2011, 38, 1206–1212. [Google Scholar] [CrossRef]
- Wang, J.C. Thermal module design and analysis of a 230 W LED illumination lamp under three incline angles. Microelectron. J. 2014, 45, 416–423. [Google Scholar] [CrossRef]
- Wei, T.; Huang, L.; Qian, J. Study on Application of Aluminous Vapor Chamber in Electronic Module Cooling. In Proceedings of the Seventh Asia International Symposium on Mechatronics; Springer: Singapore, 2020; pp. 639–645. [Google Scholar]
- Wang, R.T.; Wang, J.C. Analyzing the structural designs and thermal performance of nonmetal lighting devices of LED bulbs. Int. J. Heat Mass Transf. 2016, 99, 750–761. [Google Scholar] [CrossRef]
- Colangelo, G.; Favale, E.; Milanese, M.; de Risi, A.; Laforgia, D. Cooling of electronic devices: Nanofluids contribution. Appl. Therm. Eng. 2017, 127, 421–435. [Google Scholar] [CrossRef]
- Nazari, M.A.; Ghasempour, R.; Ahmadi, M.H. A review on using nanofluids in heat pipes. J. Therm. Anal. Calorim. 2019, 137, 1847–1855. [Google Scholar] [CrossRef]
- Hou, F.; Wang, W.; Zhang, H.; Chen, C.; Chen, C.; Lin, T.; Ferreira, J.A. Experimental evaluation of a compact two-phase cooling system for high heat flux electronic packages. Appl. Therm. Eng. 2019, 163, 114338. [Google Scholar] [CrossRef]
- Wang, R.T.; Wang, J.C.; Chang, T.L. Experimental analysis for thermal performance of a vapor chamber applied to high-performance servers. J. Mar. Sci. Technol. 2011, 19, 353–360. [Google Scholar]
- Wang, J.C.; Wang, R.T. A novel formula for effective thermal conductivity of vapor chamber. Exp. Tech. 2011, 35, 35. [Google Scholar] [CrossRef]
- Wang, J.C.; Chiang, W.C. Researches on thermo-electric properties of seawater and Al2O3 nanofluids. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2013; Volume 394, pp. 14–19. [Google Scholar]
- Tan, M.; Gan, Y.; Liang, J.; He, L.; Li, Y.; Song, S.; Shi, Y. Effect of initial temperature on electrochemical and thermal characteristics of a lithium-ion battery during charging process. Appl. Therm. Eng. 2020, 177, 115500. [Google Scholar] [CrossRef]
- Wang, R.T.; Wang, J.C. Alumina nanofluids as electrolytes comparisons to various neutral aqueous solutions inside battery. J. Mech. 2016, 32, 369. [Google Scholar] [CrossRef]
- Hou, X.R.; Wang, R.T.; Huang, S.W.; Wang, J.C. Thermoelectric Generation and Thermophysical Properties of Metal Oxide Nanofluids. J. Mar. Sci. Technol. 2021, 29, 8. [Google Scholar] [CrossRef]
- Yen, P.H.; Wang, J.C. Power generation and electric charge density with temperature effect of alumina nanofluids using dimensional analysis. Energy Convers. Manag. 2019, 186, 546–555. [Google Scholar] [CrossRef]
- Ambreen, T.; Kim, M.H. Influence of particle size on the effective thermal conductivity of nanofluids: A critical review. Appl. Energy 2020, 264, 114684. [Google Scholar] [CrossRef]
- Poongavanam, G.K.; Duraisamy, S.; Vigneswaran, V.S.; Ramalingam, V. Review on the electrical conductivity of nanofluids: Recent developments. Mater. Today Proc. 2020, 39, 1532–1537. [Google Scholar] [CrossRef]
- Chereches, E.I.; Minea, A.A. Electrical conductivity of new nanoparticle enhanced fluids: An experimental study. Nanomaterials 2019, 9, 1228. [Google Scholar] [CrossRef] [Green Version]
- Mashali, F.; Languri, E.; Mirshekari, G.; Davidson, J.; Kerns, D. Nanodiamond nanofluid microstructural and thermo-electrical characterization. Int. Commun. Heat Mass Transf. 2019, 101, 82–88. [Google Scholar] [CrossRef]
- Barai, D.P.; Chichghare, K.K.; Chawhan, S.S.; Bhanvase, B.A. Synthesis and Characterization of Nanofluids: Thermal Conductivity, Electrical Conductivity and Particle Size Distribution. In Nanotechnology for Energy and Environmental Engineering; Springer: Cham, Switzerland, 2020; pp. 1–49. [Google Scholar]
- Heyhat, M.M.; Irannezhad, A. Experimental investigation on the competition between enhancement of electrical and thermal conductivities in water-based nanofluids. J. Mol. Liquids 2018, 268, 169–175. [Google Scholar] [CrossRef]
- Geng, Y.; Khodadadi, H.; Karimipour, A.; Safaei, M.R.; Nguyen, T.K. A comprehensive presentation on nanoparticles electrical conductivity of nanofluids: Statistical study concerned effects of temperature, nanoparticles type and solid volume concentration. Phys. A Stat. Mech. Its Appl. 2020, 542, 123432. [Google Scholar] [CrossRef]
- Kim, J.; Park, H. Impact of nanofluidic electrolyte on the energy storage capacity in vanadium redox flow battery. Energy 2018, 160, 192–199. [Google Scholar] [CrossRef]
- Pinchuk, V.A.; Kuzmin, A.V. The effect of the addition of TiO2 nanoparticles to coal-water fuel on its thermophysical properties and combustion parameters. Fuel 2020, 267, 117220. [Google Scholar] [CrossRef]
- Das, S.; Giri, A.; Samanta, S. Heat transfer enhancement in a thermosyphon using TiO2 nanofluid through natural convection. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–18. [Google Scholar] [CrossRef]
Pressure (torr) | 760 | 600 | 500 | 400 | |
---|---|---|---|---|---|
Temp. (°C) | |||||
TEP | 50 | 167.6 | 169.4 | 171.3 | 179.3 |
60 | 169.6 | 171.0 | 177.0 | 181.7 | |
70 | 170.4 | 172.7 | 178.6 | 185.0 | |
80 | 172.3 | 179.3 | 185.8 | 196.4 | |
90 | 181.9 | 184.7 | 188.5 | 202.2 | |
100 | 184.2 | 186.7 | 190.1 | 203.1 |
Pressure (torr) | 760 | 600 | 500 | 400 | |
---|---|---|---|---|---|
Temp. (°C) | |||||
Current density (µA/cm2) of TEP | 25 | 5.25 | 5.25 | 5.65 | 5.65 |
50 | 8.08 | 8.89 | 10.10 | 10.10 | |
75 | 11.71 | 13.33 | 14.54 | 14.94 | |
100 | 16.96 | 18.58 | 21.01 | 21.81 | |
Power density (µW/cm2) of TEP | 25 | 2.30 | 2.30 | 2.59 | 2.67 |
50 | 4.20 | 4.44 | 5.25 | 5.33 | |
75 | 8.20 | 9.21 | 10.34 | 10.74 | |
100 | 15.11 | 16.72 | 19.55 | 21.16 |
Cnf (J/g-K) | 1.45 | |||||
ρnf (kg/m3) | 1084.16 | |||||
μnf (cP) | 1.45 | |||||
Ftp (cm3) | 5.60 | |||||
Vt (V) | 1.79 | |||||
A (cm2) | 24.76 | |||||
Knf (W/m-K) | 0.62 | |||||
(μW/cm2) | 2.95 | |||||
Vn (mV) | 0.47 | |||||
(μW/cm2) | Pressure (torr) | 760 | 600 | 500 | 400 | |
Temp. (°C) | ||||||
25 (298 K) | 2.30 | 2.30 | 2.59 | 2.67 | ||
50 (323 K) | 4.20 | 4.44 | 5.25 | 5.33 | ||
75 (348 K) | 8.20 | 9.21 | 10.34 | 10.74 | ||
100 (373 K) | 15.44 | 16.72 | 19.55 | 21.16 | ||
Ktp (W/m-K) | 50 (323 K) | 167.6 | 169.4 | 171.3 | 179.3 | |
60 (333 K) | 169.6 | 171.0 | 177.0 | 181.7 | ||
70 (343 K) | 170.4 | 172.7 | 178.6 | 185.0 | ||
80 (353 K) | 172.3 | 179.3 | 185.8 | 196.4 | ||
90 (363 K) | 181.9 | 184.7 | 188.5 | 202.2 | ||
100 (373 K) | 184.2 | 186.7 | 190.1 | 203.1 |
Temperature (°C) | 50 | 60 | 70 | 80 | 90 | 100 | |
---|---|---|---|---|---|---|---|
760 torr | Equipment | 167.60 | 169.60 | 170.40 | 172.30 | 181.90 | 184.20 |
Formula | 167.61 | 172.10 | 176.56 | 181.01 | 185.44 | 189.86 | |
EK (%) | –0.01 | –1.47 | –3.62 | –5.06 | –1.95 | –3.07 | |
600 torr | Equipment | 169.40 | 171.00 | 172.70 | 179.30 | 184.70 | 186.70 |
Formula | 169.40 | 173.94 | 178.45 | 182.95 | 187.43 | 191.89 | |
EK (%) | 0 | –1.72 | –3.33 | –2.04 | –1.48 | –2.78 | |
500 torr | Equipment | 171.3 | 177.00 | 178.60 | 185.80 | 188.50 | 190.10 |
Formula | 171.3 | 175.89 | 180.45 | 185.00 | 189.53 | 194.04 | |
EK (%) | –0.01 | 0.63 | –1.04 | 0.43 | –0.55 | –2.07 | |
400 torr | Equipment | 179.30 | 181.70 | 185.00 | 196.40 | 202.20 | 203.10 |
Formula | 179.33 | 184.13 | 188.91 | 193.67 | 198.42 | 203.14 | |
EK (%) | –0.02 | –1.34 | –2.11 | 1.39 | 1.87 | –0.02 |
Temperature (°C) | 25 | 50 | 75 | 100 | |
---|---|---|---|---|---|
760 torr | Equipment | 2.30 | 4.20 | 8.20 | 15.44 |
Formula | 2.11 | 4.48 | 8.97 | 17.15 | |
Ep (%) | 8.34 | –6.56 | –9.46 | –11.27 | |
600 torr | Equipment | 2.30 | 4.44 | 9.21 | 16.72 |
Formula | 2.23 | 4.73 | 9.49 | 18.14 | |
Ep (%) | 3.05 | –6.54 | –3.09 | –8.47 | |
500 torr | Equipment | 2.59 | 5.25 | 10.34 | 19.55 |
Formula | 2.64 | 5.59 | 11.22 | 21.43 | |
Ep (%) | –2.02 | –6.54 | –8.48 | –9.63 | |
400 torr | Equipment | 2.67 | 5.33 | 10.74 | 21.16 |
Formula | 2.68 | 5.68 | 11.39 | 21.76 | |
Ep (%) | –0.43 | –6.52 | –5.97 | –2.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gang, Q.; Wang, R.-T.; Wang, J.-C. Estimations on Properties of Redox Reactions to Electrical Energy and Storage Device of Thermoelectric Pipe (TEP) Using Polymeric Nanofluids. Polymers 2021, 13, 1812. https://doi.org/10.3390/polym13111812
Gang Q, Wang R-T, Wang J-C. Estimations on Properties of Redox Reactions to Electrical Energy and Storage Device of Thermoelectric Pipe (TEP) Using Polymeric Nanofluids. Polymers. 2021; 13(11):1812. https://doi.org/10.3390/polym13111812
Chicago/Turabian StyleGang, Qin, Rong-Tsu Wang, and Jung-Chang Wang. 2021. "Estimations on Properties of Redox Reactions to Electrical Energy and Storage Device of Thermoelectric Pipe (TEP) Using Polymeric Nanofluids" Polymers 13, no. 11: 1812. https://doi.org/10.3390/polym13111812
APA StyleGang, Q., Wang, R. -T., & Wang, J. -C. (2021). Estimations on Properties of Redox Reactions to Electrical Energy and Storage Device of Thermoelectric Pipe (TEP) Using Polymeric Nanofluids. Polymers, 13(11), 1812. https://doi.org/10.3390/polym13111812